nipraxis-fall-2022 / diagnostics-NME

0 stars 4 forks source link

Diagnostics project

Scripts go in the scripts directory.

Library code (Python modules) goes in the findoutlie directory.

You should put the code in this findoutlie directory on your Python PATH.

This README file has instructions on how to get, validate and process the data.

clone the repository

git clone git@github.com:nipraxis-fall-2022/diagnostics-NME.git

open the repository

cd diagnostics-NME

Install the dependencies

Make sure to install everything listed in 'requirements.txt' using 'pip':

pip3 install --user scipy matplotlib pandas scikit-image sympy nibabel jupyter ipython jupytext nipraxis okpy

Get the data

cd data
curl -L https://figshare.com/ndownloader/files/34951650 -o group_data.tar
tar xvf group_data.tar

First check if the hash_list.txt is added or not

git status

if there is no modification, it means the hash_list.txt is already added to git Else, add the hash_list file to Git:

git add data/group-*/hash_list.txt
git commit -m "Add hash list file"

Change directory back to root of repository

cd ..

Check the data

python3 scripts/validate_data.py data

Install the new directory module 'findoutlie'

To do this, first install the Flit Python package manager: Flit is a system for configuring and installing modules. You may be able to moit the --user below

python3 -m pip install --user flit

Next install the module using Flit. Here the command differs on Windows compared to Linux or macOS.

For macOS and Linux:

(See below for Windows command) Use Flit to install the module.

python3 -m flit install --user -s

For Windows: (See above for macOS and Linux) Use Flit to install the module.

python3 -m flit install --user --pth-file

Now test that you can import the 'findoutlie' module by running the command. The -c flag tells Python to run the code that follows the -c flag.

python3 -c 'import findoutlie'

This should give no error, because the previous step installed the 'findoutlie' directory module to somewhere on Python's search path.

Find outliers

python3 scripts/find_outliers.py data

This should print output to the terminal of form:

<filename>, <outlier_index>, <outlier_index>, ...
<filename>, <outlier_index>, <outlier_index>, ...

Where <filename> is the name of the image that has outlier scans, and <outlier_index> is an index to the volume in the 4D image that you have identified as an outlier. 0 refers to the first volume. For example (these outlier IDs are completely random, for illustration):

data/group-01/sub-08/func/sub-08_task-taskzero_run-01_bold.nii.gz, 11, 157
data/group-01/sub-08/func/sub-08_task-taskzero_run-02_bold.nii.gz, 79, 153
data/group-01/sub-01/func/sub-01_task-taskzero_run-01_bold.nii.gz, 0, 153
data/group-01/sub-01/func/sub-01_task-taskzero_run-02_bold.nii.gz, 151
data/group-01/sub-06/func/sub-06_task-taskzero_run-02_bold.nii.gz, 0, 1, 21, 22, 23, 24, 25, 26, 28, 29, 155
data/group-01/sub-06/func/sub-06_task-taskzero_run-01_bold.nii.gz, 1
data/group-01/sub-07/func/sub-07_task-taskzero_run-02_bold.nii.gz, 79, 80
data/group-01/sub-07/func/sub-07_task-taskzero_run-01_bold.nii.gz, 85
data/group-01/sub-09/func/sub-09_task-taskzero_run-02_bold.nii.gz, 23, 24, 25, 26, 27, 28, 30
data/group-01/sub-10/func/sub-10_task-taskzero_run-02_bold.nii.gz, 104
data/group-01/sub-05/func/sub-05_task-taskzero_run-01_bold.nii.gz, 0, 49, 77, 150
data/group-01/sub-05/func/sub-05_task-taskzero_run-02_bold.nii.gz, 3, 4, 5, 6, 9, 20, 23, 28, 49, 54
data/group-01/sub-03/func/sub-03_task-taskzero_run-02_bold.nii.gz, 160, 161
data/group-01/sub-03/func/sub-03_task-taskzero_run-01_bold.nii.gz, 11, 14, 15, 132, 156, 157
data/group-01/sub-04/func/sub-04_task-taskzero_run-01_bold.nii.gz, 1, 144, 154, 158, 159, 160, 161
data/group-01/sub-04/func/sub-04_task-taskzero_run-02_bold.nii.gz, 0, 1, 28, 35, 49, 52, 53

Shown below are the plots of the mean of voxel intensities for each time point vs time points. The detected outliers are marked in orange colour: