A few-shot classification algorithm: Charting the Right Manifold: Manifold Mixup for Few-shot Learning
Our code is built upon the code base of A Closer Look at Few-shot Classification and Manifold Mixup: Better Representations by Interpolating Hidden States
Donwloading the dataset and create base/val/novel splits:
miniImageNet
CUB
CIFAR-FS
Training
DATASETNAME: miniImagenet/cifar/CUB/tieredImagenet
METHODNAME: S2M2_R/rotation/manifold_mixup
For CIFAR-10
python train_cifar.py --method [METHODNAME] --model WideResNet28_10 --batch_size <batch_size> --stop_epoch <stop_epoch>
For miniImagenet/CUB/tieredImagenet
python train.py --dataset [DATASETNAME] --method [METHODNAME] --model WideResNet28_10 --batch_size <batch_size> --stop_epoch <stop_epoch>
Example Training script to replicate our result on CUB Dataset:
Fetching pretrained WideResNet_28_10 model checkpoints for evaluation
Directory path to save models should be: checkpoints/[DATASETNAME]/WideResNet2810[METHODNAME]/
Pre-trained mdoels can be downloadeded from https://drive.google.com/open?id=1S-t56H8YWzMn3sjemBcwMtGuuUxZnvb_. Move the tar files for each dataset into 'checkpoints' folder and untar it if required.
Few-shot evaluation
Create an empty 'features' directory inside 'S2M2'
python save_features.py --dataset [DATASETNAME] --method [METHODNAME] --model WideResNet28_10
python test.py --dataset [DATASETNAME] --method [METHODNAME] --model WideResNet28_10 --n_shot [1/5]
Features of pre-trained network can also be be directly downloaded at this link 'https://drive.google.com/open?id=1JtA7p3sDPksvBmOsJuR4EHw9zRHnKurj' for easy evaluation without the need to download datasets and models. Move the tar files for each dataset into 'features' folder and untar it.
Comparison with prior/current state-of-the-art methods on mini-ImageNet, CUB and CIFAR-FS dataset.
Note: We implemented LEO on CUB dataset. Other numbers are reported directly from the paper.
Method | mini-ImageNet | CUB | CIFAR-FS | |||
---|---|---|---|---|---|---|
1-shot | 5-shot | 1-shot | 5-shot | 1-shot | 5-shot | |
Baseline++ | 57.33 +- 0.10 | 72.99 +- 0.43 | 70.4 +- 0.81 | 82.92 +-0.78 | 67.5 +- 0.64 | 80.08 +- 0.32 |
LEO | 61.76 +- 0.08 | 77.59 +- 0.12 | 68.22+- 0.22 | 78.27 +- 0.16 | - | - |
DCO | 62.64 +- 0.61 | 78.63 +- 0.46 | - | - | 72.0 +- 0.7 | 84.2 +- 0.5 |
Manifold Mixup | 57.6 +- 0.17 | 75.89 +- 0.13 | 73.47 +- 0.89 | 85.42 +- 0.53 | 69.20 +- 0.2 | 83.42 +- 0.15 |
Rotation | 63.9 +- 0.18 | 81.03 +- 0.11 | 77.61 +- 0.86 | 89.32 +- 0.46 | 70.66 +- 0.2 | 84.15 +- 0.14 |
S2M2_R | 64.93 +- 0.18 | 83.18 +- 0.11 | 80.68 +- 0.81 | 90.85 +- 0.44 | 74.81 +- 0.19 | 87.47 +- 0.13 |
If you use this code for your research, Please cite using
@inproceedings{mangla2020charting,
title={Charting the right manifold: Manifold mixup for few-shot learning},
author={Mangla, Puneet and Kumari, Nupur and Sinha, Abhishek and Singh, Mayank and Krishnamurthy, Balaji and Balasubramanian, Vineeth N},
booktitle={The IEEE Winter Conference on Applications of Computer Vision},
pages={2218--2227},
year={2020}
}
A Closer Look at Few-shot Classification
Meta-Learning with Latent Embedding Optimization
Meta Learning with Differentiable Convex Optimization
Manifold Mixup: Better Representations by Interpolating Hidden States