Lightweight plotting to the terminal. 4x resolution via Unicode.
When working with production data science code it can be handy to have plotting tool that does not rely on graphics dependencies or works only in a Jupyter notebook.
The use case that this was built for is to have plots as part of your data science / machine learning CI/CD pipeline - that way whenever something goes wrong, you get not only the error and backtrace but also plots that show what the problem was.
interactive=True
)color=True
) useful in particular when plotting multiple seriesPlease note that Unicode drawing will work correctly only when using a font that fully supports the Block Elements character set or the Braille character set. Please refer to this page for a (incomplete) list of supported fonts and the options below to select the character set.
Note that all the examples are without color and plotting only a single series of data. For using color see the GIF example above.
import math
x = [math.sin(i/20)+i/300 for i in range(600)]
from uniplot import plot
plot(x, title="Sine wave")
Result:
Sine wave
┌────────────────────────────────────────────────────────────┐
│ ▟▀▚ │
│ ▗▘ ▝▌ │
│ ▗▛▜▖ ▞ ▐ │
│ ▞ ▜ ▗▌ ▌ │ 2
│ ▟▀▙ ▗▘ ▝▌ ▐ ▜ │
│ ▐▘ ▝▖ ▞ ▜ ▌ ▝▌ │
│ ▗▛▜▖ ▛ ▜ ▗▌ ▝▌ ▐▘ ▜ │
│ ▛ ▙ ▗▘ ▝▖ ▐ ▚ ▞ ▝▌ │
│ ▟▀▖ ▐▘ ▝▖ ▟ ▚ ▌ ▝▖ ▗▌ ▜▄│ 1
│ ▐▘ ▐▖ ▛ ▙ ▌ ▐▖ ▗▘ ▚ ▞ │
│ ▛ ▙ ▗▘ ▐▖ ▐ ▙ ▞ ▝▙▟▘ │
│▐▘ ▐▖ ▐ ▌ ▛ ▐▖ ▗▘ │
│▞ ▌ ▌ ▐ ▗▘ ▜▄▛ │
│▌─────▐────▐▘───────▙──▞────────────────────────────────────│ 0
│ ▌ ▛ ▝▙▟▘ │
│ ▜ ▐▘ │
│ ▙▄▛ │
└────────────────────────────────────────────────────────────┘
100 200 300 400 500 600
Here we are using Pandas to load and prepare global temperature data from the Our World in Data GitHub repository.
First we load the data, rename a column and and filter the data:
import pandas as pd
uri = "https://github.com/owid/owid-datasets/raw/master/datasets/Global%20average%20temperature%20anomaly%20-%20Hadley%20Centre/Global%20average%20temperature%20anomaly%20-%20Hadley%20Centre.csv"
data = pd.read_csv(uri)
data = data.rename(columns={"Global average temperature anomaly (Hadley Centre)": "Global"})
data = data[data.Entity == "median"]
Then we can plot it:
from uniplot import plot
plot(xs=data.Year, ys=data.Global, lines=True, title="Global normalized land-sea temperature anomaly", y_unit=" °C")
Result:
Global normalized land-sea temperature anomaly
┌────────────────────────────────────────────────────────────┐
│ ▞▀│
│ ▐ │
│ ▐ │
│ ▗ ▌ │ 0.6 °C
│ ▙ ▗▄ ▛▄▖▗▘▌ ▞ │
│ ▗▜ ▌ ▜ ▚▞ ▚▞ │
│ ▐▝▖▐ ▘ │
│ ▗ ▗ ▌ ▙▌ │ 0.3 °C
│ ▛▖ ▞▙▘ ▘ │
│ ▖ ▗▄▗▘▐ ▐▘▜ │
│ ▟ █ ▞ ▜ ▝▄▘ │
│ ▗▚ ▗ ▖ ▗ ▖▗▞ █▐ ▌ ▘ │
│▁▁▁▞▐▁▁▗▘▜▗▀▀▌▁▁▁▁▙▁▁▟▁▁▁▙▐▁▁▜▁▌▞▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│ 0 °C
│▚ ▐ ▝▖ ▐ ▛ ▌ ▗▄▐ ▌▗▘▌ ▐▝▌ ▝▘ │
│ ▌▌ ▌ ▞ ▐▗▘ ▛ ▐▞ ▌ ▐ │
│ ▝ ▝▖▌ ▐▞ ▝▌ ▚▜▐ │
│ ▗▌ ▝ ▝ ▌ │
└────────────────────────────────────────────────────────────┘
1,950 1,960 1,970 1,980 1,990 2,000 2,010
The plot
function accepts a number of parameters, all listed below. Note that
only ys
is required, all others are optional.
There is also a plot_to_string
function with the same signature, if you want
the result as a list of strings, to include the output elsewhere. The only
difference is that plot_to_string
does not support interactive mode.
xs
- The x coordinates of the points to plot. Can either be None
, or a
list or NumPy array for plotting a single series, or a list of those for
plotting multiple series. Defaults to None
, meaning that the x axis will be
just the sample index of ys
.ys
- The y coordinates of the points to plot. Can either be a list or NumPy
array for plotting a single series, or a list of those for plotting multiple
series.In both cases, NaN values are ignored.
Note that since v0.12.0 you can also pass a list or an NumPy array of timestamps, and the axis labels should be formatted correctly. Limitations see below.
In alphabetical order:
character_set
- Which Unicode character set to use. Use "block"
for
the Block Elements character
set with 4x resolution, or
"braille"
for the Braille character
set with 8x resolution.
The latter has a lighter look overall. Defaults to "block"
.color
- Draw series in color. Defaults to False
when plotting a single
series, and to True
when plotting multiple. Also accepts a list of strings,
to modify the default order of
["blue", "magenta", "green", "yellow", "cyan", "red"]
.force_ascii
- Force ASCII characters for plotting only. This can be useful
for compatibility, for example when using uniplot inside of CI/CD systems
that do not support Unicode. Defaults to False
.force_ascii_characters
- List of characters to use when plotting in
force_ascii
mode. Default to ["+", "x", "o", "*", "~", "."]
.height
- The height of the plotting region, in characters. Default is 17
.interactive
- Enable interactive mode. Defaults to False
.legend_labels
- Labels for the series. Can be None
or a list of strings.
Defaults to None
.lines
- Enable lines between points. Can either be True
or False
, or a
list of those values for plotting multiple series. Defaults to False
.line_length_hard_cap
- Enforce a hard limit on the number of characters per
line of the plot area. This may override the width
option if there is not
enough space. Defaults to None
.title
- The title of the plot. Defaults to None
.width
- The width of the plotting region, in characters. Default is 60
.
Note that if the line_length_hard_cap
option is used and there is not
enough space, the actual width may be smaller.x_as_log
- Plot the x axis as logarithmic scale. Defaults to False
.x_gridlines
- A list of x values that have a vertical line for better
orientation. Defaults to [0]
, or to []
if x_as_log
is enabled.x_max
- Maximum x value of the view. Defaults to a value that shows all
data points.x_min
- Minimum x value of the view. Defaults to a value that shows all
data points.x_unit
- Unit of the x axis. This is a string that is appended to the axis
labels. Defaults to ""
.y_as_log
- Plot the y axis as logarithmic scale. Defaults to False
.y_gridlines
- A list of y values that have a horizontal line for better
orientation. Defaults to [0]
, or to []
if y_as_log
is enabled.y_max
- Maximum y value of the view. Defaults to a value that shows all
data points.y_min
- Minimum y value of the view. Defaults to a value that shows all
data points.y_unit
- Unit of the y axis. This is a string that is appended to the axis
labels. Defaults to ""
.uniplot does not store a state of the configuration parameters. However, you
can define a new plot funtion with new defaults by defining a partial
. See
the following example:
from functools import partial
from uniplot import plot as default_plot
plot = partial(default_plot, height=25, width=80)
This defines a new plot
function that is identical to the original, except
the default values for width
and height
are now different.
For convenience there is also a histogram
function that accepts one or more
series and plots bar-chart like histograms. It will automatically discretize
the series into a number of bins given by the bins
option and display the
result.
Additional options, in alphabetical order:
bins
- Number of bins to use. Defaults to 20
.bins_min
- Lower limit of the first bin. Defaults to the minimum of the
series.bins_max
- Upper limit of the last bin. Defaults to the maximum of the
series.When calling the histogram
function, the lines
option is True
by default.
Example:
import numpy as np
x = np.sin(np.linspace(1, 1000))
from uniplot import histogram
histogram(x)
Result:
┌────────────────────────────────────────────────────────────┐
│ ▛▀▀▌ │ ▐▀▀▜ │ 5
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▀▀▀▌ │ ▐▀▀▀ ▝▀▀▜ │
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▙▄▄▄▄▄▖ │ ▗▄▄▄ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ ▐ ▐ │
│ ▌ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▜ ▐▀▀▀ ▝▀▀▀ ▐ │
│ ▌ │ ▐ ▐ ▐ │
│ ▌ │ ▐ ▐ ▐ │
│ ▌ │ ▐▄▄▟ ▐ │
│ ▌ │ ▐ │
│ ▌ │ ▐ │
│▄▄▄▌▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▐▄▄▄│ 0
└────────────────────────────────────────────────────────────┘
-1 0 1
There is inital support for using timestamps for the axis labels. It should work with most formats.
Missing so far are nicer axis labels for time stamps, as well as timezone support.
Example:
import numpy as np
dates = np.arange('2024-02-17T12:10', 4*60, 60, dtype='M8[m]')
from uniplot import plot
plot(xs=dates, ys=[1,2,3,2])
Result:
┌────────────────────────────────────────────────────────────┐
│ ▝ │ 3
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ ▘ ▝│ 2
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│▖ │ 1
└────────────────────────────────────────────────────────────┘
13:00 14:00 15:00
Install via pip using:
pip install uniplot
Clone this repository, and install dependecies via poetry install
.
You can run the tests via poetry run ./run_tests
to make sure your setup is
good. Then proceed with issues, PRs etc. the usual way.