omni-us / squeezedet-keras

Keras implementation of the Squeeze Det Object Detection Deep Learning Framework
MIT License
129 stars 41 forks source link

SqueezeDet on Keras

SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving

By Bichen Wu, Alvin Wan, Forrest Iandola, Peter H. Jin, Kurt Keutzer (UC Berkeley & DeepScale)

This repository contains a Keras implementation of SqueezeDet, a convolutional neural network based object detector described in this paper: https://arxiv.org/abs/1612.01051. The original implementation can be found here. If you find this work useful for your research, please consider citing:

@inproceedings{squeezedet,
    Author = {Bichen Wu and Forrest Iandola and Peter H. Jin and Kurt Keutzer},
    Title = {SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving},
    Journal = {arXiv:1612.01051},
    Year = {2016}
}

Installation

Please have a look at our Installation Guide

How do I run it?

I will show an example on the KITTI dataset. If you have any doubts, most scripts run with the -h flag give you the arguments you can pass

Tensorboard visualization

For tensoboard visualization you can can run:

tensorboard --logdir log

Open in your brower localhost:6006 or the IP where you ran the training. On the first page you can see the losses, sublosses and metrics like mean average precision and f1 scores.

Image not found

On the second page, you find visualizations of a couple of validation images with their ground truth bounding boxes and how the predictions change over the course of the training.

Image not found

The third page gives you a nice view over the network graph.

Image not found