Open wsy-yjys opened 8 months ago
--task inference
(py39torch2) wsy@ubuntu:~/paper2/mmyolo$ python tools/analysis_tools/benchmark_old.py configs/yolov6/yolov6_v3_n_syncbn_fast_2xb32-300e_coco_SGD.py work_dirs/yolov6_v3_n_syncbn_fast_2xb32-300e_coco_SGD/best_coco_bbox_mAP_epoch_300.pth --fuse-conv-bn --max-iter 20 --repeat-num 3 --task inference
usage: benchmark_old.py [-h] [--repeat-num REPEAT_NUM] [--max-iter MAX_ITER] [--log-interval LOG_INTERVAL] [--work-dir WORK_DIR] [--fuse-conv-bn]
[--cfg-options CFG_OPTIONS [CFG_OPTIONS ...]] [--launcher {none,pytorch,slurm,mpi}] [--local_rank LOCAL_RANK]
config checkpoint
benchmark_old.py: error: unrecognized arguments: --task inference
@slantingsun Hello, mmyolo does not have task arguments. In addition, I tested other models, including yolox and yolov7, and their fps is normal, only yolov6_v3 is abnormal.
i use the code
mim run mmdet benchmark config_myself/yolov5_s-v61_syncbn_8xb16-300e_coco.py --checkpoint work_dirs/yolov5_s-v61_syncbn_8xb16-300e_coco/best_coco_bbox_mAP_epoch_300.pth --task inference
@slantingsun, your test is yolov5, I use the following command, yolov6_v3_n_syncbn_fast results are still abnormal, have you tested yolov6?
(py39torch2) wsy@ubuntu:~/paper2/mmyolo$ mim run mmdet benchmark configs/yolov6/yolov6_v3_n_syncbn_fast_2xb32-300e_coco_SGD.py --checkpoint work_dirs/yolov6_v3_n_syncbn_fast_2xb32-300e_coco_SGD/best_coco_bbox_mAP_epoch_300.pth --fuse-conv-bn --max-iter 20 --repeat-num 3 --task inference
Use the script /home/wsy/anaconda3/envs/py39torch2/lib/python3.9/site-packages/mmdet/.mim/tools/analysis_tools/benchmark.py for command benchmark.
The command to call is /home/wsy/anaconda3/envs/py39torch2/bin/python /home/wsy/anaconda3/envs/py39torch2/lib/python3.9/site-packages/mmdet/.mim/tools/analysis_tools/benchmark.py configs/yolov6/yolov6_v3_n_syncbn_fast_2xb32-300e_coco_SGD.py --checkpoint work_dirs/yolov6_v3_n_syncbn_fast_2xb32-300e_coco_SGD/best_coco_bbox_mAP_epoch_300.pth --fuse-conv-bn --max-iter 20 --repeat-num 3 --task inference.
03/26 22:53:42 - mmengine - INFO - before build:
03/26 22:53:42 - mmengine - INFO - (GB) mem_used: 7.34 | uss: 0.40 | pss: 0.41 | total_proc: 1
Loads checkpoint by local backend from path: work_dirs/yolov6_v3_n_syncbn_fast_2xb32-300e_coco_SGD/best_coco_bbox_mAP_epoch_300.pth
loading annotations into memory...
Done (t=0.63s)
creating index...
index created!
03/26 22:53:46 - mmengine - INFO - after build:
03/26 22:53:46 - mmengine - INFO - (GB) mem_used: 8.77 | uss: 2.10 | pss: 2.11 | total_proc: 1
/home/wsy/anaconda3/envs/py39torch2/lib/python3.9/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3483.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
03/26 22:53:52 - mmengine - INFO - ============== Done ==================
03/26 22:53:52 - mmengine - INFO - Overall fps: [9.2, 19.7, 21.0][16.6] img/s, times per image: [109.2, 50.9, 47.6][69.2] ms/img
03/26 22:53:52 - mmengine - INFO - cuda memory: 574 MB
03/26 22:53:52 - mmengine - INFO - (GB) mem_used: 10.17 | uss: 3.83 | pss: 3.84 | total_proc: 1
The script finished successfully.
Prerequisite
🐞 Describe the bug
Hello, I first train the yolov6_v3_n on COCO according to the configs of 300 epoch provided by you. The result is shown below, which is normal. Here's the model
But when I tested the speed with the following command, it was very slow.
Environment
Additional information
No response