open-mmlab / mmyolo

OpenMMLab YOLO series toolbox and benchmark. Implemented RTMDet, RTMDet-Rotated,YOLOv5, YOLOv6, YOLOv7, YOLOv8,YOLOX, PPYOLOE, etc.
https://mmyolo.readthedocs.io/zh_CN/dev/
GNU General Public License v3.0
3.01k stars 544 forks source link
deep-learning object-detection ppyoloe pytorch rotated-object-detection rtmdet yolo yolov5 yolov6 yolov7 yolov8 yolox
 
OpenMMLab website HOT      OpenMMLab platform TRY IT OUT
 
[![PyPI](https://img.shields.io/pypi/v/mmyolo)](https://pypi.org/project/mmyolo) [![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmyolo.readthedocs.io/en/latest/) [![deploy](https://github.com/open-mmlab/mmyolo/workflows/deploy/badge.svg)](https://github.com/open-mmlab/mmyolo/actions) [![codecov](https://codecov.io/gh/open-mmlab/mmyolo/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmyolo) [![license](https://img.shields.io/github/license/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/blob/main/LICENSE) [![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/issues) [![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/issues) [๐Ÿ“˜Documentation](https://mmyolo.readthedocs.io/en/latest/) | [๐Ÿ› ๏ธInstallation](https://mmyolo.readthedocs.io/en/latest/get_started/installation.html) | [๐Ÿ‘€Model Zoo](https://mmyolo.readthedocs.io/en/latest/model_zoo.html) | [๐Ÿ†•Update News](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html) | [๐Ÿค”Reporting Issues](https://github.com/open-mmlab/mmyolo/issues/new/choose)
English | [็ฎ€ไฝ“ไธญๆ–‡](README_zh-CN.md)

๐Ÿ“„ Table of Contents

๐Ÿฅณ ๐Ÿš€ What's New ๐Ÿ”

๐Ÿ’Ž v0.6.0 was released on 15/8/2023:

For release history and update details, please refer to changelog.

โœจ Highlight ๐Ÿ”

We are excited to announce our latest work on real-time object recognition tasks, RTMDet, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the technical report. Pre-trained models are here.

PWC PWC PWC

Task Dataset AP FPS(TRT FP16 BS1 3090)
Object Detection COCO 52.8 322
Instance Segmentation COCO 44.6 188
Rotated Object Detection DOTA 78.9(single-scale)/81.3(multi-scale) 121

MMYOLO currently implements the object detection and rotated object detection algorithm, but it has a significant training acceleration compared to the MMDeteciton version. The training speed is 2.6 times faster than the previous version.

๐Ÿ“– Introduction ๐Ÿ”

MMYOLO is an open source toolbox for YOLO series algorithms based on PyTorch and MMDetection. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.6+.

Major features - ๐Ÿ•น๏ธ **Unified and convenient benchmark** MMYOLO unifies the implementation of modules in various YOLO algorithms and provides a unified benchmark. Users can compare and analyze in a fair and convenient way. - ๐Ÿ“š **Rich and detailed documentation** MMYOLO provides rich documentation for getting started, model deployment, advanced usages, and algorithm analysis, making it easy for users at different levels to get started and make extensions quickly. - ๐Ÿงฉ **Modular Design** MMYOLO decomposes the framework into different components where users can easily customize a model by combining different modules with various training and testing strategies. BaseModule-P5 The figure above is contributed by RangeKing@GitHub, thank you very much! And the figure of P6 model is in [model_design.md](docs/en/recommended_topics/model_design.md).

๐Ÿ› ๏ธ Installation ๐Ÿ”

MMYOLO relies on PyTorch, MMCV, MMEngine, and MMDetection. Below are quick steps for installation. Please refer to the Install Guide for more detailed instructions.

conda create -n mmyolo python=3.8 pytorch==1.10.1 torchvision==0.11.2 cudatoolkit=11.3 -c pytorch -y
conda activate mmyolo
pip install openmim
mim install "mmengine>=0.6.0"
mim install "mmcv>=2.0.0rc4,<2.1.0"
mim install "mmdet>=3.0.0,<4.0.0"
git clone https://github.com/open-mmlab/mmyolo.git
cd mmyolo
# Install albumentations
pip install -r requirements/albu.txt
# Install MMYOLO
mim install -v -e .

๐Ÿ‘จโ€๐Ÿซ Tutorial ๐Ÿ”

MMYOLO is based on MMDetection and adopts the same code structure and design approach. To get better use of this, please read MMDetection Overview for the first understanding of MMDetection.

The usage of MMYOLO is almost identical to MMDetection and all tutorials are straightforward to use, you can also learn about MMDetection User Guide and Advanced Guide.

For different parts from MMDetection, we have also prepared user guides and advanced guides, please read our documentation.

Get Started - [Overview](docs/en/get_started/overview.md) - [Dependencies](docs/en/get_started/dependencies.md) - [Installation](docs/en/get_started/installation.md) - [15 minutes object detection](docs/en/get_started/15_minutes_object_detection.md) - [15 minutes rotated object detection](docs/en/get_started/15_minutes_rotated_object_detection.md) - [15 minutes instance segmentation](docs/en/get_started/15_minutes_instance_segmentation.md) - [Resources summary](docs/en/get_started/article.md)
Recommended Topics - [How to contribute code to MMYOLO](docs/en/recommended_topics/contributing.md) - [Training testing tricks](docs/en/recommended_topics/training_testing_tricks.md) - [MMYOLO model design](docs/en/recommended_topics/model_design.md) - [Algorithm principles and implementation](docs/en/recommended_topics/algorithm_descriptions/) - [Replace the backbone network](docs/en/recommended_topics/replace_backbone.md) - [MMYOLO model complexity analysis](docs/en/recommended_topics/complexity_analysis.md) - [Annotation-to-deployment workflow for custom dataset](docs/en/recommended_topics/labeling_to_deployment_tutorials.md) - [Visualization](docs/en/recommended_topics/visualization.md) - [Model deployment](docs/en/recommended_topics/deploy/) - [Troubleshooting steps](docs/en/recommended_topics/troubleshooting_steps.md) - [MMYOLO application examples](docs/en/recommended_topics/application_examples/) - [MM series repo essential basics](docs/en/recommended_topics/mm_basics.md) - [Dataset preparation and description](docs/en/recommended_topics/dataset_preparation.md)
Common Usage - [Resume training](docs/en/common_usage/resume_training.md) - [Enabling and disabling SyncBatchNorm](docs/en/common_usage/syncbn.md) - [Enabling AMP](docs/en/common_usage/amp_training.md) - [Multi-scale training and testing](docs/en/common_usage/ms_training_testing.md) - [TTA Related Notes](docs/en/common_usage/tta.md) - [Add plugins to the backbone network](docs/en/common_usage/plugins.md) - [Freeze layers](docs/en/common_usage/freeze_layers.md) - [Output model predictions](docs/en/common_usage/output_predictions.md) - [Set random seed](docs/en/common_usage/set_random_seed.md) - [Module combination](docs/en/common_usage/module_combination.md) - [Cross-library calls using mim](docs/en/common_usage/mim_usage.md) - [Apply multiple Necks](docs/en/common_usage/multi_necks.md) - [Specify specific device training or inference](docs/en/common_usage/specify_device.md) - [Single and multi-channel application examples](docs/en/common_usage/single_multi_channel_applications.md)
Useful Tools - [Browse coco json](docs/en/useful_tools/browse_coco_json.md) - [Browse dataset](docs/en/useful_tools/browse_dataset.md) - [Print config](docs/en/useful_tools/print_config.md) - [Dataset analysis](docs/en/useful_tools/dataset_analysis.md) - [Optimize anchors](docs/en/useful_tools/optimize_anchors.md) - [Extract subcoco](docs/en/useful_tools/extract_subcoco.md) - [Visualization scheduler](docs/en/useful_tools/vis_scheduler.md) - [Dataset converters](docs/en/useful_tools/dataset_converters.md) - [Download dataset](docs/en/useful_tools/download_dataset.md) - [Log analysis](docs/en/useful_tools/log_analysis.md) - [Model converters](docs/en/useful_tools/model_converters.md)
Basic Tutorials - [Learn about configs with YOLOv5](docs/en/tutorials/config.md) - [Data flow](docs/en/tutorials/data_flow.md) - [Rotated detection](docs/en/tutorials/rotated_detection.md) - [Custom Installation](docs/en/tutorials/custom_installation.md) - [Common Warning Notes](docs/zh_cn/tutorials/warning_notes.md) - [FAQ](docs/en/tutorials/faq.md)
Advanced Tutorials - [MMYOLO cross-library application](docs/en/advanced_guides/cross-library_application.md)
Descriptions - [Changelog](docs/en/notes/changelog.md) - [Compatibility](docs/en/notes/compatibility.md) - [Conventions](docs/en/notes/conventions.md) - [Code Style](docs/en/notes/code_style.md)

๐Ÿ“Š Overview of Benchmark and Model Zoo ๐Ÿ”

Results and models are available in the model zoo.

Supported Tasks - [x] Object detection - [x] Rotated object detection
Supported Algorithms - [x] [YOLOv5](configs/yolov5) - [ ] [YOLOv5u](configs/yolov5/yolov5u) (Inference only) - [x] [YOLOX](configs/yolox) - [x] [RTMDet](configs/rtmdet) - [x] [RTMDet-Rotated](configs/rtmdet) - [x] [YOLOv6](configs/yolov6) - [x] [YOLOv7](configs/yolov7) - [x] [PPYOLOE](configs/ppyoloe) - [x] [YOLOv8](configs/yolov8)
Supported Datasets - [x] COCO Dataset - [x] VOC Dataset - [x] CrowdHuman Dataset - [x] DOTA 1.0 Dataset
Module Components
Backbones Necks Loss Common
  • YOLOv5CSPDarknet
  • YOLOv8CSPDarknet
  • YOLOXCSPDarknet
  • EfficientRep
  • CSPNeXt
  • YOLOv7Backbone
  • PPYOLOECSPResNet
  • mmdet backbone
  • mmcls backbone
  • timm
  • YOLOv5PAFPN
  • YOLOv8PAFPN
  • YOLOv6RepPAFPN
  • YOLOXPAFPN
  • CSPNeXtPAFPN
  • YOLOv7PAFPN
  • PPYOLOECSPPAFPN
  • IoULoss
  • mmdet loss

โ“ FAQ ๐Ÿ”

Please refer to the FAQ for frequently asked questions.

๐Ÿ™Œ Contributing ๐Ÿ”

We appreciate all contributions to improving MMYOLO. Ongoing projects can be found in our GitHub Projects. Welcome community users to participate in these projects. Please refer to CONTRIBUTING.md for the contributing guideline.

๐Ÿค Acknowledgement ๐Ÿ”

MMYOLO is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to re-implement existing methods and develop their own new detectors.

๐Ÿ–Š๏ธ Citation ๐Ÿ”

If you find this project useful in your research, please consider citing:

@misc{mmyolo2022,
    title={{MMYOLO: OpenMMLab YOLO} series toolbox and benchmark},
    author={MMYOLO Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmyolo}},
    year={2022}
}

๐ŸŽซ License ๐Ÿ”

This project is released under the GPL 3.0 license.

๐Ÿ—๏ธ Projects in OpenMMLab ๐Ÿ”