This Prometheus sample app generates all 4 Prometheus metric types (counter, gauge, histogram, summary) and exposes them at the /metrics
endpoint
A health check endpoint also exists at /
The following is a list of optional command line flags for configuration:
listen_address
: (default = 0.0.0.0:8080
)this defines the address and port that the sample app is exposed to. This is primarily to conform with the test framework requirements.metric_count
: (default=1) the amount of each type of metric to generate. The same amount of metrics is always generated per metric type.label_count
: (default=1) the amount of labels per metric to generate.datapoint_count
: (default=1) the number of data-points per metric to generate. Steps for running locally:
$ go build .
$ ./prometheus-sample-app -listen_address=0.0.0.0:4567 -metric_count=100
Steps for running in docker:
$ docker build . -t prometheus-sample-app
$ docker run -it -p 8080:8080 prometheus-sample-app /bin/main -listen_address=0.0.0.0:8080
$ curl localhost:8080/metrics
Note that the port in LISTEN_ADDRESS must match the the second port specified in the port-forward
More functioning examples:
$ docker build . -t prometheus-sample-app
$ docker run -it -p 9001:8080 prometheus-sample-app /bin/main -listen_address=0.0.0.0:8080
$ curl localhost:9001/metrics
$ docker build . -t prometheus-sample-app
$ docker run -it -p 9001:8080 prometheus-sample-app /bin/main -listen_address=0.0.0.0:8080 -metric_count=100
$ curl localhost:9001/metrics
Running the commands above will require a config file for setting defaults. The config file is provided in this application. To modify it just change the values. To override config file defaults you can specify your arguments via command line
Usage of generate:
-is_random
Metrics specification
-metric_count int
Amount of metrics to create
-metric_frequency int
Refresh interval in seconds
-metric_type string
Type of metric (counter, gauge, histogram, summary)
-label_count int
Amount of labels to create per metric
-datapoint_count int
Number of datapoints to create per metric
Example:
$ docker build . -t prometheus-sample-app
$ docker run -it -p 8080:8080 prometheus-sample-app /bin/main -listen_address=0.0.0.0:8080 generate -metric_type=summary -metric_count=30 -metric_frequency=10
$ curl localhost:8080/metrics
$ docker build . -t prometheus-sample-app
$ docker run -it -p 8080:8080 prometheus-sample-app /bin/main -listen_address=0.0.0.0:8080 generate -metric_type=all -is_random=true
$ curl localhost:8080/metrics
Deploy the example deployment configuration of 5 instances of Prometheus-Sample-App along with configured OTEL Collector.
$ minikube start
$ kubectl apply -f otel-collector-k8s-deployment.yaml
$ kubectl create clusterrolebinding service-reader-pod --clusterrole=service-reader --serviceaccount=default:default
$ kubectl apply -f prometheus-sample-app-k8s-deployment.yaml
$ kubectl logs <otel-collector-pod-name>
$ eksctl create cluster --name <cluster-name> --region <region> --with-oidc --ssh-access --ssh-public-key <public-key>
$ aws ecr get-login-password --region region | docker login --username AWS --password-stdin aws_account_id.dkr.ecr.region.amazonaws.com
$ docker build -t prometheus_sample_app .
$ docker tag prometheus_sample_app:latest aws_account_id.dkr.ecr.region.amazonaws.com/my-repository:tag
$ docker push aws_account_id.dkr.ecr.region.amazonaws.com/my-repository:tag
$ kubectl apply -f otel-collector-k8s-deployment.yaml
$ kubectl create clusterrolebinding service-reader-pod --clusterrole=service-reader --serviceaccount=default:default
$ kubectl apply -f prometheus-sample-app-k8s-deployment.yaml
$ kubectl logs <otel-collector-pod-name>
Currently, OTEL Collector is configured with Logging exporter. In this example, all replica Prometheus-Sample-App pods will produce identical metrics, and the Prometheus Exporter doesn't ingest identical metrics (same name and label) from different sources.