openai / ebm_code_release

Code for Implicit Generation and Generalization with Energy Based Models
https://sites.google.com/view/igebm
345 stars 66 forks source link

Implicit Generation and Generalization in Energy Based Models

Code for Implicit Generation and Generalization in Energy Based Models. Blog post can be found here and website with pretrained models can be found here.

Requirements

To install the prerequisites for the project run

pip install -r requirements.txt
mkdir sandbox_cachedir

Download all pretrained models and unzip into the folder cachedir.

Download Datasets

For MNIST and CIFAR-10 datasets, the code will directly download the data.

For ImageNet 128x128 dataset, download the TFRecords of the Imagenet dataset by running the following command

for i in $(seq -f "%05g" 0 1023)
do
  wget https://[deprecated]/data/imagenet/train-$i-of-01024
done

for i in $(seq -f "%05g" 0 127)
do
  wget https://[deprecated]/data/imagenet/validation-$i-of-00128
done

wget https://[deprecated]/data/imagenet/index.json

For Imagenet 32x32 dataset, download the Imagenet 32x32 dataset and unzip by running the following command

wget https://[deprecated]/data/imagenet32/Imagenet32_train.zip
wget https://[deprecated]/data/imagenet32/Imagenet32_val.zip

For dSprites dataset, download the dataset by running

wget https://github.com/deepmind/dsprites-dataset/blob/master/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz?raw=true

Training

To train on different datasets:

For CIFAR-10 Unconditional

python train.py --exp=cifar10_uncond --dataset=cifar10 --num_steps=60 --batch_size=128 --step_lr=10.0 --proj_norm=0.01 --zero_kl --replay_batch --large_model

For CIFAR-10 Conditional

python train.py --exp=cifar10_cond --dataset=cifar10 --num_steps=60 --batch_size=128 --step_lr=10.0 --proj_norm=0.01 --zero_kl --replay_batch --cclass

For ImageNet 32x32 Conditional

python train.py --exp=imagenet_cond --num_steps=60  --wider_model --batch_size=32 step_lr=10.0 --proj_norm=0.01 --replay_batch --cclass --zero_kl --dataset=imagenet --imagenet_path=<imagenet32x32 path>

For ImageNet 128x128 Conditional

python train.py --exp=imagenet_cond --num_steps=50 --batch_size=16 step_lr=100.0 --replay_batch --swish_act --cclass --zero_kl --dataset=imagenetfull --imagenet_datadir=<full imagenet path>

All code supports horovod execution, so model training can be increased substantially by using multiple different workers by running each command.

mpiexec -n <worker_num>  <command>

Demo

The imagenet_demo.py file contains code to experiments with EBMs on conditional ImageNet 128x128. To generate a gif on sampling, you can run the command:

python imagenet_demo.py --exp=imagenet128_cond --resume_iter=2238000 --swish_act

The ebm_sandbox.py file contains several different tasks that can be used to evaluate EBMs, which are defined by different settings of task flag in the file. For example, to visualize cross class mappings in CIFAR-10, you can run:

python ebm_sandbox.py --task=crossclass --num_steps=40 --exp=cifar10_cond --resume_iter=74700

Generalization

To test generalization to out of distribution classification for SVHN (with similar commands for other datasets)

python ebm_sandbox.py --task=mixenergy --num_steps=40 --exp=cifar10_large_model_uncond --resume_iter=121200 --large_model --svhnmix --cclass=False

To test classification on CIFAR-10 using a conditional model under either L2 or Li perturbations

python ebm_sandbox.py --task=label --exp=cifar10_wider_model_cond --resume_iter=21600 --lnorm=-1 --pgd=<number of pgd steps> --num_steps=10 --lival=<li bound value> --wider_model

Concept Combination

To train EBMs on conditional dSprites dataset, you can train each model seperately on each conditioned latent in cond_pos, cond_rot, cond_shape, cond_scale, with an example command given below.

python train.py --dataset=dsprites --exp=dsprites_cond_pos --zero_kl --num_steps=20 --step_lr=500.0 --swish_act  --cond_pos --replay_batch -cclass

Once models are trained, they can be sampled from jointly by running

python ebm_combine.py --task=conceptcombine --exp_size=<exp_size> --exp_shape=<exp_shape> --exp_pos=<exp_pos> --exp_rot=<exp_rot> --resume_size=<resume_size> --resume_shape=<resume_shape> --resume_rot=<resume_rot> --resume_pos=<resume_pos>