RelEx is a dependency parser for the English language. It extracts dependency relations from Link Grammar, and adds some shallow semantic analysis. The primary use of RelEx is as a language input front-end to the OpenCog artificial general intelligence system.
There are multiple inter-related parts to RelEx. The core component extracts the dependency relationships. An experimental module provides some simple anaphora resolution suggestions. Output is provided in various formats, including one format suitable for later batch post-processing, another format suitable for input to OpenCog, and an W3C OWL format. There are also a small assortment of perl scripts for cleaning up web and wiki pages, &c.
The main RelEx website is at
It provides an overview of the project, as well as detailed documentation.
The source code management system is at
Source tarballs may be downloaded from either of two locations:
Build and install of the core package is discussed below.
The easiest way to run RelEx is with Docker. The Docker system allows sandboxed containers to be easily created and deployed; the typical use of a container is to run some server. See the http://www.docker.io website for more info and tutorials.
Opencog has prebuilt images for relex available with the image tag: opencog/relex
To have docker run the plain text server, type into a terminal:
$ docker run -it -p 3333:3333 opencog/relex /bin/sh plain-text-server.sh
To test the plain text server via telnet, type into another terminal:
telnet localhost 3333
This is a test sentence!
The server will return a plain-text analysis of the input sentence and disconnect the session.
To have docker run the OpenCog format server, type:
$ docker run -it -p 4444:4444 opencog/relex /bin/sh opencog-server.sh
To test the OpenCog format server via telnet, type into another terminal:
telnet localhost 4444
This is a test sentence!
The server will return an OpenCog/Scheme version of the parse and disconnect the session.
To have docker run the raw link-grammar JSON-format server, type:
$ docker run -it -p 9000:9000 opencog/relex /bin/sh link-grammar-server.sh
You can now access the relex server with telnet.
The raw link-grammar server expects a JSON-formatted input, begining
with the 5 letters text:
it returns a JSON-formatted response.
To test the link-grammar JSON format server via telnet, type into another terminal:
telnet localhost 9000
text:This is a test sentence!
This will return a JSON formatted parse and then disconnect the session.
A docker cheat-sheet:
docker ps
docker ps -a
docker rm
docker images
docker rmi
An installation script for Ubuntu/Debian is provided in the install-scripts directory.
For other systems, follow the instructions below. To build and use RelEx, the following packages are required to be installed:
The following packages are required pre-requisites for building RelEx.
Link Grammar Parser. Compile and install the Link Grammar Parser. This parser is described at
and sources are available for download at
Link-grammar version 5.2.1 or later is needed to obtain a variety of required fixes.
The Link Grammar Parser is the underlying engine, providing the core sentence parsing ability.
If the parser is not installed in the default location,
be sure to modify -Djava.library.path
appropriately in
relation-extractor.sh
and other shell scripts.
GNU getopt.
This is a standard command-line option parsing library.
For Ubuntu, install the libgetopt-java
package.
Wordnet. Wordnet is used by RelEx to provide basic English morphology analysis, such as singular versions of (plural) nouns, base forms (lemmas) of adjectives, adverbs and infinitive forms of verbs.
Download, unpack and install WordNet 3.0. The install directory
needs to be specified in data/wordnet/file_properties.xml
, with
the name="dictionary_path"
property in this file.
Some typical install locations are:
/opt/WordNet-3.0/data
for RedHat and SuSE/usr/share/wordnet
for Ubuntu and DebianC:\Program Files\WordNet\3.0\data
for WindowsThe relex/Morphy/Morphy.java
class provides a simple, easy-to-use
wrapper around wordnet, providing the needed word morphology info.
The following packages are required pre-requisites for building RelEx. Note, that they are automatically installed if Maven system is used.
didion.jwnl. The didion JWNL is the "Java WordNet Library", and provides the Java programming API to access the wordnet data files. Its home page is at
and can be downloaded from
Verify that the final installed location of jwnl.jar
is correctly
specified in the build.xml
file. Note that GATE also provides a
jwnl.jar
, but the GATE version of jwnl.jar
is not compatible
(welcome to java DLL hell).
When copying jwnl.jar
: verify the file permisions! Be sure to issue
the following command: chmod 644 jwnl.jar
, as otherwise, you'll
get strange "java cannot unzip jar" error messages.
Apache Commons Logging.
The JWNL package requires that the Apache commons logging
jar file be installed. In Debian/Ubuntu, this is supplied by
the libcommons-logging-java
package. In RedHat/CentOS systems,
the package name is jakarta-commons-logging
.
SLF4J and Logback. RelEx uses SLF4J as a facade for the Logback logging framework. SLF4J home pages is at
and can be downloaded from
Logback home pages is at
and can be downloaded from
The following packages are optional. If they are found, then additional parts of RelEx will be built, enabling additional function.
If you use Maven, these dependencies are already managed.
OpenNLP.
RelEx uses OpenNLP for sentence detection, giving RelEx the ability
to find sentence boundaries in free text. If OpenNLP is not found,
then the (far) less accurate java.text.BreakIterator
class is used.
Although Oracle documentation states that "Sentence boundary analysis
allows selection with correct interpretation of periods within numbers
and abbreviations", this is patently false, as it incorrectly breaks
the sentence "Dr. Smith is late." into two sentences. Thus, OpenNLP
is recommended.
The OpenNLP home page is at
Download and install OpenNLP tools, and verify that the
installed files are correctly identified in both build.xml
and in relation-extractor.sh
.
OpenNLP also requires the installation of maxent from
You'll need maxent-3.0.0.jar
and opennlp-tools-1.5.3.jar
.
The OpenNLP package is used solely in corpus/DocSplitter.java, which provides a simple, easy-to-use wrapper for splitting a document into sentences. Replace this file if an alternate sentence detector is desired.
Trove. Some users may require the GNU Trove to enable OpenNLP, although this depends on the JDK installed. GNU Trove is an implementation of the java.util class hierarchy, which may or may not be included in the installed JDK. If needed, download trove from:
Since trove is optimized, using it may improve performance and/or decrease memory usage, as compared to the standard Sun JDK implementation of the java.util hierarchy.
IMPORTANT OpenNLP expects Gnu Trove version 1.0, and will not work with version 2.0 !!
Maven manages almost all of dependencies automatically. Only exception is Link Grammar library which should be added into local maven repository manually, using:
mvn install:install-file \
-Dfile=<linkgrammar-jar-folder/linkgrammar.jar> \
-DgroupId=org.opencog \
-DartifactId=linkgrammar \
-Dversion=<linkgrammar.version> \
-Dpackaging=jar
Then you can build and install relex.jar using:
mvn install
It is assumed that RelEx will be used in one of two different ways. These are in a "batch processing" mode, and a "custom Java development" mode.
In the "batch processing mode", RelEx is run once over a large text, and its output is saved to a file. This output can then be post-processed at a later time, to extract desired info. The goal here is to avoid the heavy CPU overhead of re-parsing a large text over and over. Example post-processing scripts are included (described below).
In the "custom Java development" mode, it is assumed that a capable
Java programmer can write new code to interface RelEx to meet their needs.
A good place to start is to review the workings of the output code in
src/java/relex/output/*.java
.
The standard RelEx demo output is NOT SUITABLE for post-processing. It is meant to be a human-readable example of what the system generates; it does not include all required output. For example, if the same word appears in a sentence twice, the demo output will not distinguish between these two words.
This release of RelEx includes an experimental Stanford-parser
compatibility mode. In this mode, RelEx will generate the same
dependency relations as the Stanford parser. This mode is technically
interesting for comparing output; RelEx is more than three time faster
than the lexicalized (factored) Stanford parser, although it is slower
than the PCFG parser. This is described in greater detail in the file
README-Stanford
.
This release of RelEx includes an optional Penn Treebank style part of speech tagger. The tagger is experimental, and has not been evaluated for accuracy. It is probable that the accuracy is low, primarily because it has not been well tested. Because the tagging is based on the syntactic parse, in principle the accuracy could be very high, once fully debugged.
Several example unix shell scripts and MS Windows batch files are
included to show sample usage. These files (*.sh
in unix, or *.bat
,
in Windows) define the required system properties, classpath and JVM
options.
If there are any ClassNotFound exceptions, please verify the paths and values in these files.
relation-extractor.sh
The primary usage example is the relation-extractor.sh
file.
Running this will display:
Output is controlled by command-line flags that are set in the shell
script. The -h
flag will print a list of all of the available
command-line options.
batch-process.sh
The batch-process.sh
script is an example batch processing script.
This script outputs the so-called "compact (cff) format" which captures
the full range of Link Grammar and RelEx output in a format that can be
easily post-processed by other systems (typically by using regex's).
The idea behind the batch processing is that it is costly to parse large quantities of text: thus, it is convenient to parse the text once, save the results, and then perform post-processing at leisure, as needed. Thus, the form of post-processing can be changed at will, without requiring texts to be re-processed over and over again.
src/perl/cff-to-opencog.pl
This perl script provides an example of post-processing: it converts the "cff" batch output format into OpenCog hypergraphs, which can then be processed by OpenCog.
opencog-server.sh
This script starts a relex server that listens for plain-text input (English sentences) on port 4444. It then parses the text, and returns opencog output on the same socket. This server is meant to serve the OpenCog chatbot directly; it is not intended for general, manual use.
doc-splitter.sh
The doc-splitter.sh
file is a simple command-line utility to reformat
a free-form text into sentences, one per line.
src/perl/wiki-scrub.pl
Ad-hoc script to scrub Wikipedia xml dumps, outputting only valid English-language sentences. This script removes wiki markup, URL's tables, images, & etc. It currently seems to be pretty darned bullet-proof, although it might handle multi-line refs incorrectly.
relexd
, relexd-relex
, relexd-link
If you built RelEx with Maven, these scripts can be used.
They accept additional arguments to be passed to relex.Server
.
sh target/appassembler/bin/relexd
, which runs java relex.Server ...
sh target/appassembler/bin/relexd-relex
, which runs java relex.Server --relex ...
sh target/appassembler/bin/relexd-link
, which runs relex.Server --link --relex --verbose ...
The primary output of RelEx is the set of semantic relationships of a
sentence. To obtain the list of these relationships, make a copy of
src/java/relex/output/SimpleView.java
, and customize it to provide
the relationships that you wish, in the format that you wish.
The class src/java/relex/RelationExtractor.java
should be considered
to be a large example program illustrating all of the various features
of RelEx. For custom applications, this class should be copied and
modified as desired to fit the application.
Performance comparison of RelEx-1.2.0 vs. Stanford-1.6.1, run 11 Oct 2009. Test corpus: first 150 sentences (including preface boilerplate) from Project Gutenberg "Pride and Prejudice". Due to differences in sentence detection, Stanford and RelEx disagree on the sentence count. Due to differences in counting punctuation, the splitting of possessives and contractions, the two disagree on the word count as well.
Since these tests were run, the performance of link-grammar has been improved by a factor of 2x-3x. This update should have a significant effect on relex speeds.
The unix command wc
counts 2609 words in 148 sentences, for
2609/148 = 17.6 words/sent.
time
command: real 10m4.882s
user 10m1.974s
sys 0m4.208s
Actual: 2609/605= 4.31 words/sec
time
command: real 2m21.690s
user 2m23.165s
sys 0m1.056s
Actual: 2609/143 = 18.24 words/sec
time
command: real 10m5.972s
user 10m3.802s
sys 0m4.516s
time
command: real 2m11.154s
user 2m14.312s
sys 0m1.144s
Actual: 2609/134 = 19.47 words/sec
time
command: real 2m59.739s
user 2m36.342s
sys 0m22.137s
Actual: 2609/180 = 14.50 words/sec
Ratio: Stanford-englishFactored/RelEx = 605sec/180sc = 3.36x (faster)
Ratio: Stanford-wsjFactored/RelEx = 606sec/180sec = 3.36x (faster)
Ratio: Stanford-englishPCFG/RelEx = 143sec/180sec = 0.79x (slower)
Ratio: Stanford-wsjPCFG/RelEx = 134sec/180sec = 0.74x (slower)
RelEx is buggy when it comes to handling comparative sentences. This needs fixing.
Windows users consistently have trouble installing Wordnet correctly. In particular, dictionary location appears to be totally random. Try to find some work-around for this.
Sentence splitter: The sentence splitter fails to split the following:
"In such cases, a woman has not often much beauty to think of." "But, my dear, you must indeed go and see Mr. Bingley when he comes into the neighbourhood."
todo
Key ideas:
See: Olga Moudraia, "Lexical Approach to Second Language Teaching" http://www.cal.org/resources/digest/0102lexical.html
Alternate names: "gambits", "lexical phrases", "lexical units", "lexicalized stems", "speech formulae".
Lexis may be single words, and also the word combinations that are a basis of one's mental lexicon. That is, language consists of meaningful chunks that, when combined, produce continuous coherent text; only a minority of spoken sentences are entirely novel creations.
Types of lexical chunks:
(Taken from Lewis, M. (1997b). "Pedagogical implications of the lexical approach." In J. Coady & T. Huckin (Eds.), "Second language vocabulary acquisition: A rationale for pedagogy" (pp. 255-270). Cambridge: Cambridge University Press.)