Arthur Câmara and Craig Macdonald
This is the docker image for the Terrier toolkit (v5.2) conforming to the OSIRRC jig for the Open-Source IR Replicability Challenge (OSIRRC) at SIGIR 2019. This image is available on Docker Hub
robust04
, gov2
, cw09b
, cw12b
(web), core18
(newswire)init
, index
, train
, search
vx.y.z
with the desired release version or with current
for the latest releaseThe following jig
command can be used to index TREC disks 4/5 for robust04
:
python run.py prepare --repo osirrc2019/terrier --tag vx.y.z --collections robust04=/tmp/disk45/=trectext
The following jig
command can be used to perform a retrieval run on the collection with the robust04
test collection, using BM25 as ranker:
python run.py search \
--repo osirrc2019/terrier \
--tag vx.y.z \
--collection robust04 \
--topic topics/topics.robust04.txt \
--qrels qrels/qrels.robust04.txt\
--output /tmp/runs
This image supports the following weighting models: BM25 (bm25
), PL2 (pl2
) and DPH
(dph
).
Additionally, it supports Query Expansion and Proximity-based (DFRD) search, by including qe
, prox
or prox_qe
to the --opts config
argument: --opts config=<retrieval_model>_<extra>
:
(BM25)
python run.py search --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --output /tmp/runs --opts config=bm25
(BM25 + query expansion)
python run.py search --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --output /tmp/runs --opts config=bm25_qe
(BM25 + Proximity)
python run.py search --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --output /tmp/runs --opts config=bm25_prox
(BM25 + Proximity + query expansion)
python run.py search --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --output /tmp/runs --opts config=bm25_prox_qe
(PL2)
python run.py search --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --output /tmp/runs --opts config=pl2
(PL2 + query expansion)
python run.py search --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --output /tmp/runs --opts config=pl2_qe
(PL2 + Proximity)
python run.py search --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --output /tmp/runs --opts config=pl2_prox
(PL2 + Proximity + query expansion)
python run.py search --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --output /tmp/runs --opts config=pl2_prox_qe
(DPH)
python run.py search --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --output /tmp/runs --opts config=dph
(DPH + query expansion)
python run.py search --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --output /tmp/runs --opts config=dph_qe
(DPH + Proximity)
python run.py search --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --output /tmp/runs --opts config=dph_prox
(DPH + Proximity + query expansion)
python run.py search --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --output /tmp/runs --opts config=dph_prox_qe
NOTE: for running DFRD (Proximity-based model), the index must be build using the --opts=block.indexing=true
param
Learning-to-rank will typically require that the index has more information, e.g. fields or blocks.
python run.py prepare --repo osirrc2019/terrier --tag vx.y.z --collections robust04=/tmp/disk45/=trectext --opts "FieldTags.process=HEADLINE"
You need to specify the features to be used by Terrier - see http://terrier.org/docs/v5.1/learning.html for more information about Terrier feature definitions.
python run.py train --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --test_split $PWD/sample_training_validation_query_ids/robust04_test.txt --validation_split $PWD/sample_training_validation_query_ids/robust04_validation.txt --model_folder /tmp/runs --opts features="SAMPLE;WMODEL:SingleFieldModel(BM25,0);QI:SingleFieldModel(Dl,0)"
You will need to specify the bm25_ltr_jforest
configuration.
python run.py search --repo osirrc2019/terrier --tag vx.y.z --collection robust04 --topic topics/topics.robust04.txt --qrels qrels/qrels.robust04.txt --output /tmp/runs --opts config=bm25_ltr_jforest
MAP | BM25 | +QE | +Prox | +Prox + QE | DPH | + QE | +Prox | +Prox +QE | PL2 | +QE |
---|---|---|---|---|---|---|---|---|---|---|
TREC 2004 Robust Track Topics | 0.2363 | 0.2762 | 0.2404 | 0.2781 | 0.2479 | 0.2821 | 0.2501 | 0.2869 | 0.2241 | 0.2538 |
MAP | BM25 | +QE | +Prox | +Prox + QE | DPH | + QE | +Prox | +Prox +QE | PL2 | +QE |
---|---|---|---|---|---|---|---|---|---|---|
TREC 2018 Common Core Track Topics | 0.2326 | 0.2975 | 0.2369 | 0.2960 | 0.2427 | 0.3055 | 0.2428 | 0.3035 | 0.2225 | 0.2787 |
MAP | BM25 | +QE | +Prox | +Prox + QE | DPH | + QE | +Prox | +Prox +QE | PL2 | +QE |
---|---|---|---|---|---|---|---|---|---|---|
TREC 2004 Terabyte Track: Topics 701-750 | 0.2461 | 0.2621 | 0.2537 | 0.2715 | 0.2804 | 0.3120 | 0.2834 | 0.3064 | 0.2334 | 0.2478 |
TREC 2005 Terabyte Track: Topics 751-800 | 0.3081 | 0.3506 | 0.3126 | 0.3507 | 0.3311 | 0.3754 | 0.3255 | 0.3095 | 0.2884 | 0.3160 |
TREC 2006 Terabyte Track: Topics 801-850 | 0.2629 | 0.3118 | 0.2724 | 0.3085 | 0.2917 | 0.3494 | 0.2904 | 0.3288 | 0.2363 | 0.2739 |
This image also supports the interact
hooks from the OSIRRC JIG. After initializing the image (with python run.py prepare
):
python run.py interact --repo terrier --tag vx.y.z
The following (internal) ports will be made available:
Port 1980
: Search interface: A user-friendly HTML search interface, reachable using a web browser. (more information can be found at the Terrier Documentation)
Port 1981
: REST API: This port provides a REST API for Terrier. You can either directly submit requests to this port or use another Terrier instance as a client, like:
$ /bin/terrier interactive -I http://dockerhost:1981/
terrier query> information retrieval end:5
Displaying 1-6 results
0 FBIS4-20699 10.268754805435458
1 FBIS4-20702 9.768490153503198
2 FR941027-2-00046 9.491347902606723
3 FBIS4-20701 9.456022500508775
4 FBIS3-24510 9.31403481019499
5 FBIS4-20700 8.79234249484928
1982
: Terrier-Spark Jupyter Notebook: This port initialises a Scala Jupyter Notebook that is able to interact with the Terrier Index previously initialized. By acessing the notebook, a sample notebook (simpleRun.ipynb
) is available, with minimal working examples. For more information, check Macdonald, 2018 and Macdonald et al., 2018.NOTE Currently, the JIG may redirect these ports to diverse ones in the host machine. This is due to the way that Docker deals with port assignment. Therefore, you should check the correct port assignment by running:
$> docker ps
and check the right port assignment under the PORTS
column.
0b13139
(2019-06-16) by Ryan Clancy.9700a36
(2019-06-21) by Ryan Clancy.