Yurita is an open source project for developing large scale anomaly detection models Site
Documentation on Yurita's architecture, statistical models available, anomaly detection pipeline/data flow, etc can be found here: https://yurita.readthedocs.io/en/latest/
foo@bar:~/yurita$ ./gradlew clean build
foo@bar:~/yurita$ ./gradlew publishToMavenLocal
Please build the project from source at this time or try our dockerized Yurita demo application to build automatically as we make the project jar available on Maven Central in upcoming few days.
<dependency>
<groupId>io.github.paypal</groupId>
<artifactId>yurita</artifactId>
<version>1.0.0</version>
</dependency>
Other Required Dependencies:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.4.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.4.1</version>
</dependency>
YuritaSampleApp
directory in the Yurita project root path contains a standalone scala project for you to play around with. Run the demo through Docker inside YuritaSampleApp
directory as shown below.
foo@bar:~/YuritaSampleApp$ docker build -f Dockerfile -t yuritademo .
foo@bar:~/YuritaSampleApp$ docker run -p 8080:8080 -t yuritademo
Create SparkSession with your own configurations
val appName = "AnomalyDetectionAPI"
val sparkConf = new SparkConf().setAppName(appName).setMaster("local[*]")
val spark = SparkSession
.builder()
.config(sparkConf)
.getOrCreate()
Create dataframe of your data points/attributes with what time interval they occur on
//sample window timestamp
val window1 = (dateFormat.parse("2011-01-18 01:00:00.0"), dateFormat.parse("2011-01-18 01:00:10.0"))
val inputDF: DataFrame = Seq(
Person("Ned", "Stark", 40, 40.6, "M", Array(5.5), getTimestamp(window1)),
Person("Arya", "Stark", 9, 40.1, "F", Array(5.6), getTimestamp(window2)),
Person("Sansa", "Stark", 13, 46.3, "F", Array(5.6), getTimestamp(window3)),
Person("Jon Snow", "Stark", 17, 11.4, "M", Array(12.4), getTimestamp(window1),
...
).toDF()
Create a data pipe that will perform specified stastical methods on set columns of dataframe within the window size.
val categoricalPipe = PipelineBuilder()
.onColumns(Seq("surname", "gender"))
.setWindowing(Window.fixed("1 hour"))
.setWindowReferencing(windowRef)
.buildCategoricalModel(
Functions.Categorical.avgRef,
Functions.Categorical.entropy,
Functions.statResultThreshold(3.0))
Combine multiple pipelines
val workload = AnomalyWorkload.builder()
.addAllPipelines(categoricalPipe)
.addPartitioner("surname")
.buildWithWatermark("timestamp", "2 hours")
Dataset extended api
df.detectAnomalies(workload).map(_.toString).foreach(println(_))
Full demo application code can be viewed in our YuritaSampleApp project.
Thank you very much for contributing to Yurita. Please read the contribution guidelines for the process.
Yurita is licensed under the Apache License, v2.0