================================= This implementation contains an extension of seq2seq tutorial for conversation models in Tensorflow:
Option to use Beam Search and Beam Size for decoding
Currently, it supports
To get better results use beam search during decoding / inference
Examples of basic model can be found in this paper.
https://arxiv.org/abs/1702.05512
Data accepted is in the tsv format where first component is the context and second is the reply
TSV format Ubuntu Dialog Data can be found here
example :-
To train a model with Ubuntu dataset:
$ python neural_conversation_model.py --train_dir ubuntu/ --en_vocab_size 60000 --size 512 --data_path ubuntu/train.tsv --dev_data ubuntu/valid.tsv --vocab_path ubuntu/60k_vocan.en --attention
To test an existing model:
$ python neural_conversation_model.py --train_dir ubuntu/ --en_vocab_size 60000 --size 512 --data_path ubuntu/train.tsv --dev_data ubuntu/valid.tsv --vocab_path ubuntu/60k_vocan.en --attention --decode --beam_search --beam_size 25
https://github.com/pbhatia243/tf-layer-norm
Parminder Bhatia, parminder.bhatia243@gmail.com