pcjiang1998 / torchpf

torchpf: A Tool for Pytorch Model Analyzer.
MIT License
5 stars 1 forks source link

Build Status

torchpf

This is a lightweight neural network analyzer based on PyTorch. It is designed to make building your networks quick and easy, with the ability to debug them. Note: This repository is currently under development. Therefore, some APIs might be changed.

This tools can show

Installing

There're two ways to install torchpf into your environment.

or

pip install torchpf


* Install and update using **setup.py** after cloning this repository.
```bash
$ python3 setup.py install

A Simple Example

If you want to run the torchpf asap, you can call it as a CLI tool if your network exists in a script. Otherwise you need to import torchpf as a module.

CLI tool

$> torchpf -f example.py -m Net
      module name  input shape output shape     params memory(MB)           MAdd         Flops  MemRead(B)  MemWrite(B) duration[%]   MemR+W(B)
0           conv1    3 224 224   10 220 220      760.0       1.85   72,600,000.0  36,784,000.0    605152.0    1936000.0      57.49%   2541152.0
1           conv2   10 110 110   20 106 106     5020.0       0.86  112,360,000.0  56,404,720.0    504080.0     898880.0      26.62%   1402960.0
2      conv2_drop   20 106 106   20 106 106        0.0       0.86            0.0           0.0         0.0          0.0       4.09%         0.0
3             fc1        56180           50  2809050.0       0.00    5,617,950.0   2,809,000.0  11460920.0        200.0      11.58%  11461120.0
4             fc2           50           10      510.0       0.00          990.0         500.0      2240.0         40.0       0.22%      2280.0
total                                        2815340.0       3.56  190,578,940.0  95,998,220.0      2240.0         40.0     100.00%  15407512.0
===============================================================================================================================================
Total params: 2,815,340
-----------------------------------------------------------------------------------------------------------------------------------------------
Total memory: 3.56MB
Total MAdd: 190.58MMAdd
Total Flops: 96.0MFlops
Total MemR+W: 14.69MB

If you're not sure how to use a specific command, run the command with the -h or –help switches. You'll see usage information and a list of options you can use with the command.

Module

from torchpf import show_stat
import torchvision.models as models

model = models.resnet18()
input_size=(3, 224, 224)
show_stat(model, input_size)
from torchpf import cal_Flops, cal_MAdd, cal_Memory, cal_params
import torchvision.models as models

model = models.resnet18()
input_size=(3, 224, 224)
print('Flops = ',cal_Flops(model, input_size))
print('MAdd = ',cal_MAdd(model, input_size))
print('Memory = ',cal_Memory(model, input_size))
print('Params = ',cal_params(model, input_size))

Features & TODO

Note: These features work only nn.Module. Modules in torch.nn.functional are not supported yet.

For the supported layers, check out the details.

Requirements

References

Thanks to @Swall0w for the initial version.