pengfei-luo / MIMIC

[KDD 2023] Multi-Grained Multimodal Interaction Network for Entity Linking
18 stars 3 forks source link

Multi-Grained Multimodal Interaction Network for Entity Linking

arXiv Digital Library Dataset Video

This repository is the official implementation for the paper titled "Multi-Grained Multimodal Interaction Network for Entity Linking".

mimic

News

Usage

Step 1: Set up the environment

We recommend using Conda to manage virtual environments, and we use Python version 3.8.12.

conda create -n mimic python==3.8.12
conda activate mimic

Please install the specified versions of Python libraries according to the requirements.txt file.

Note that the versions of PyTorch, Transformers, and PyTorch Lightning may have a slight impact on the results. To fully reproduce the results of the paper, we recommend installing the specified versions.

Step 2: Download the data

You may download WikiMEL and RichpediaMEL from https://github.com/seukgcode/MELBench and WikiDiverse from https://github.com/wangxw5/wikiDiverse.

Or download our cleaned data WikiMEL, RichpediaMEL, WikiDiverse (Password: kdd2023).

Step 3: Modify the data path

Please modify the configuration files under the "config" directory (including the YAML files for all 3 datasets) and replace YOUR_PATH in the data field of each configuration file with the path to your corresponding dataset.

NOTE: Due to the uploaded training files of RichpediaMEL, mention images are stored in the folder mention_images. You need to modify the mention_img_folder in the richpediamel.yaml config file or rename the mention_images folder to mention_image. (Thank Zhiwei Hu for bringing up this issue)

Step 4: Start the training

Now you can execute bash run.sh <gpu_id> <dataset_name> to begin the training.

bash run.sh 0 wikimel       # for WikiMEL
bash run.sh 0 richpediamel  # for RichpediaMEL
bash run.sh 0 wikidiverse   # for WikiDiverse

Code Structure

The code is organized as follows:

├── codes
│   ├── main.py
│   ├── model
│   │   ├── lightning_mimic.py
│   │   └── modeling_mimic.py
│   └── utils
│       ├── dataset.py
│       └── functions.py
├── config
│   ├── richpediamel.yaml
│   ├── wikidiverse.yaml
│   └── wikimel.yaml
├── readme.md
├── requirements.txt
└── run.sh

Results

Main Result

Model WikiMEL RichpediaMEL WikiDiverse
H@1↑ H@3↑ H@5↑ MRR↑ MR↓ H@1↑ H@3↑ H@5↑ MRR↑ MR↓ H@1↑ H@3↑ H@5↑ MRR↑ MR↓
BLINK 74.66 86.63 90.57 81.72 51.48 58.47 81.51 88.09 71.39 178.57 57.14 78.04 85.32 69.15 332.03
BERT 74.82 86.79 90.47 81.78 51.23 59.55 81.12 87.16 71.67 278.08 55.77 75.73 83.11 67.38 373.96
RoBERTa 73.75 85.85 89.80 80.86 31.02 61.34 81.56 87.15 72.80 218.16 59.46 78.54 85.08 70.52 405.22
DZMNED 78.82 90.02 92.62 84.97 152.58 68.16 82.94 87.33 76.63 313.85 56.90 75.34 81.41 67.59 563.26
JMEL 64.65 79.99 84.34 73.39 285.14 48.82 66.77 73.99 60.06 470.90 37.38 54.23 61.00 48.19 996.63
VELML 76.62 88.75 91.96 83.42 102.72 67.71 84.57 89.17 77.19 332.85 54.56 74.43 81.15 66.13 463.25
GHMFC 76.55 88.40 92.01 83.36 54.75 72.92 86.85 90.60 80.76 214.64 60.27 79.40 84.74 70.99 628.87
CLIP 83.23 92.10 94.51 88.23 17.60 67.78 85.22 90.04 77.57 107.16 61.21 79.63 85.18 71.69 313.35
ViLT 72.64 84.51 87.86 79.46 220.76 45.85 62.96 69.80 56.63 675.93 34.39 51.07 57.83 45.22 2421.49
ALBEF 78.64 88.93 91.75 84.56 47.95 65.17 82.84 88.28 75.29 122.30 60.59 75.59 81.30 69.93 291.17
METER 72.46 84.41 88.17 79.49 111.90 63.96 82.24 87.08 74.15 376.42 53.14 70.93 77.59 63.71 944.48
MIMIC 87.98 95.07 96.37 91.82 11.02 81.02 91.77 94.38 86.95 55.11 63.51 81.04 86.43 73.44 227.08

Low-resource Setting Result

To access low-resource training data, please refer here.

10% RichpediaMEL

| **Model** | **H@1** | **H@3** | **H@5** | **H@10** | **MRR** | |-----------|---------|---------|---------|----------|---------| | DZMNED | 22.57 | 34.95 | 41.33 | 50.48 | 31.79 | | JMEL | 16.70 | 27.68 | 33.63 | 41.55 | 25.01 | | VELML | 27.15 | 38.60 | 43.99 | 51.99 | 35.52 | | GHMFC | 68.00 | 83.38 | 87.73 | 91.97 | 76.69 | | ViLT | 11.73 | 18.59 | 22.07 | 27.32 | 17.05 | | METER | 60.89 | 79.23 | 84.78 | 89.42 | 71.40 | | CLIP | 62.66 | 79.14 | 85.06 | 90.68 | 72.51 | | ALBEF | 63.19 | 79.31 | 84.25 | 89.42 | 72.51 | | MIMIC | 64.49 | 82.03 | 87.59 | 92.45 | 74.62 |

20% RichpediaMEL

| **Model** | **H@1** | **H@3** | **H@5** | **H@10** | **MRR** | |-----------|---------|---------|---------|----------|---------| | DZMNED | 36.38 | 52.25 | 58.28 | 67.46 | 47.01 | | JMEL | 28.92 | 43.35 | 50.59 | 61.54 | 39.38 | | VELML | 48.85 | 64.91 | 71.76 | 79.42 | 59.24 | | GHMFC | 72.57 | 86.69 | 90.15 | 93.77 | 80.42 | | ViLT | 30.24 | 42.39 | 48.40 | 55.73 | 38.81 | | METER | 61.51 | 79.56 | 84.48 | 89.50 | 71.82 | | CLIP | 64.32 | 79.59 | 85.54 | 90.96 | 73.72 | | ALBEF | 64.21 | 79.47 | 85.32 | 89.92 | 73.02 | | MIMIC | 75.60 | 88.63 | 91.72 | 94.67 | 82.73 |

10% WikiDiverse

| **Model** | **H@1** | **H@3** | **H@5** | **H@10** | **MRR** | |-----------|---------|---------|---------|----------|---------| | DZMNED | 11.45 | 22.52 | 29.50 | 37.15 | 19.99 | | JMEL | 19.97 | 32.19 | 37.58 | 44.37 | 28.26 | | VELML | 30.51 | 46.20 | 52.36 | 59.62 | 40.70 | | ViLT | 13.19 | 21.27 | 26.37 | 32.68 | 19.57 | | METER | 40.42 | 61.31 | 70.26 | 78.78 | 53.53 | | CLIP | 59.87 | 76.52 | 81.57 | 85.95 | 69.49 | | ALBEF | 51.83 | 69.20 | 74.64 | 81.57 | 62.26 | | GHMFC | 48.08 | 66.31 | 74.25 | 81.91 | 59.56 | | MIMIC | 60.54 | 76.18 | 81.33 | 86.14 | 69.70 |

20% WikiDiverse

| **Model** | **H@1** | **H@3** | **H@5** | **H@10** | **MRR** | |-----------|---------|---------|---------|----------|---------| | DZMNED | 28.73 | 47.35 | 56.69 | 63.96 | 40.97 | | JMEL | 29.26 | 44.23 | 49.90 | 57.22 | 39.05 | | VELML | 43.65 | 61.36 | 67.66 | 74.88 | 54.76 | | ViLT | 20.93 | 32.92 | 38.93 | 47.26 | 29.48 | | METER | 40.23 | 61.16 | 70.45 | 80.56 | 53.46 | | CLIP | 59.96 | 77.05 | 82.24 | 86.86 | 69.95 | | ALBEF | 56.40 | 73.87 | 78.97 | 85.08 | 66.56 | | GHMFC | 51.73 | 71.85 | 78.54 | 84.50 | 63.46 | | MIMIC | 61.01 | 77.67 | 83.35 | 88.88 | 70.52 |

Citation

If you find this project useful in your research, please cite the following paper:

@inproceedings{luo2023multi,
    author = {Luo, Pengfei and Xu, Tong and Wu, Shiwei and Zhu, Chen and Xu, Linli and Chen, Enhong},
    title = {Multi-Grained Multimodal Interaction Network for Entity Linking},
    year = {2023},
    publisher = {Association for Computing Machinery},
    booktitle = {Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
    pages = {1583–1594},
}

Contact Information

If you have any questions, please contact pfluo@mail.ustc.edu.cn.