This repository represents the official implementation of the paper:
PointMBF: A Multi-scale Bidirectional Fusion Network for Unsupervised RGB-D Point Cloud Registration
This code has been tested on
To create a virtual environment and install the required dependences please run:
git clone https://github.com/phdymz/PointMBF.git
conda create --name PointMBF python=3.8
conda activate PointMBF
pip install -r requirements.txt
You need to download the RGB-D version of 3DMatch dataset and ScanNet dataset in advance. Details can refer to URR.
python create_3dmatch_rgbd_dict.py --data_root 3dmatch_train.pkl train
python create_3dmatch_rgbd_dict.py --data_root 3dmatch_valid.pkl valid
python create_3dmatch_rgbd_dict.py --data_root 3dmatch_test.pkl test
python create_scannet_dict.py --data_root scannet_train.pkl train
python create_scannet_dict.py --data_root scannet_valid.pkl valid
python create_scannet_dict.py --data_root scannet_test.pkl test
python train.py --name RGBD_3DMatch --RGBD_3D_ROOT
python train.py --name ScanNet --SCANNET_ROOT
python test.py --checkpoint --SCANNET_ROOT
We provide the pre-trained model of PointMBF in BaiDuyun, Password: pmbf.
In this project we use (parts of) the official implementations of the followin works:
3DMatch (Make dataset)
We thank the respective authors for open sourcing their methods.
If you find this code useful for your work or use it in your project, please consider citing:
@article{yuan2023pointmbf,
title={PointMBF: A Multi-scale Bidirectional Fusion Network for Unsupervised RGB-D Point Cloud Registration},
author={Yuan, Mingzhi and Fu, Kexue and Li, Zhihao and Meng, Yucong and Wang, Manning},
journal={arXiv preprint arXiv:2308.04782},
year={2023}
}