philoskim / debux

A trace-based debugging library for Clojure and ClojureScript.
473 stars 19 forks source link

Debux

:source-language: clojure :source-highlighter: coderay :sectnums: :imagesdir: ./doc/img :toc:

Debux is a simple but useful library for debugging Clojure and ClojureScript. I wrote this library to debug my own Clojure(Script) code and to analyze other developer's one.

Prerequisites

[[two-libraries]]

Two libraries

In development, use the philoskim/debux library. When you use debux macros and functions from this library, it will emit debugging messages to the REPL window or the Chrome DevTools' console.

In production, use the philoskim/debux-stubs (link:https://github.com/philoskim/debux-stubs[]) library. This has the same public API as philoskim/debux but the macros simply expand only to the given original form itself.

With this setup

WARNING: Never use philoskim/debux library in production because it will impose too much overhead on the peformance, especially in using dbgn and clogn, even though (set-debug-mode! false) is run.

Installation

First, please be sure to read the "Two libraries" section immediately above for background.

To include debux in your project for development, simply add the following to your project.clj development dependencies:

[source] .... [philoskim/debux "0.9.1"] ....

and this to your production dependencies.

[source] .... [philoskim/debux-stubs "0.9.1"] ....

Recent change logs

NOTE: You can see All change logs since v0.3.0 https://github.com/philoskim/debux/tree/master/doc/change-logs.adoc[here].

The minimum version of Clojure is upgraded from 1.8.0 to 1.10.0 ClojureScript dependency in Clojure removed. ** bb (Babashka for Clojure) support added. See the details <<babashka, here>>. *** nbb (Babashka for Node) is not supported yet.

tap> support added. See the details <<tap-output, here>>. ** set-tap-output! function added. set-date-time-fn! function added.

** :simple option added.

How to use

In Clojure, the following line should be included in your file.

[source] .... (use 'debux.core) ....

In ClojureScript, the following (:require pass:q[...]) line has to be included in your file.

[source] .examples/core.cljs .... (ns examples.core (:require [debux.cs.core :as d :refer-macros [clog clogn dbg dbgn break clog clogn dbg dbgn break_]])) ....

{empty} +

[cols="^1m,^1m,^1m,^1m,^1m,^1m", options="header"] .Debugging API use

|===

| | dbg | dbgn | clog | clogn | break

| Clojure REPL | O | O | X | X | X | ClojureScript REPL | O | O | X | X | X | ClojureScript Browser console | O | O | O | O | O

|===

//-

. dbg/dbgn can be used in Clojure REPL.

. dbg/dbgn can be used in ClojureScript REPL like link:https://github.com/tomjakubowski/weasel[weasel] or https://github.com/bhauman/lein-figwheel[figwheel].

** Refer to <> for Browser REPL usage.

. dbg/dbgn , clog/clogn and break can be used in the browser console window like Chrome DevTools. + TIP: I recommend that you should use clog/clogn instead of dbg/dbgn in the browser console window, because clog/clogn uses the console.log function of browser's developer tools to style the form. You can see its effect <<style-option, here>>.

dbg examples

NOTE: You can see every example source code of this document in https://github.com/philoskim/debux/tree/master/examples[examples] folder.

Basic usage

NOTE: The features of clog are almost the same as those of dbg.

The macro dbg prints an original form and pretty-prints the evaluated value on the REPL window. Then it returns the value without interrupting the code evaluation.

[source] .... (* 2 (dbg (+ 10 20))) ; => 60 ....

[listing] .REPL output

{:ns examples.demo, :line 8} dbg: (+ 10 20) => | 30

[#eval-multiple-forms] Sometimes you need to see multiple forms evaluated. To do so, a literal vector form can be used like this.

[source] .... (defn my-fun [a {:keys [b c d] :or {d 10 b 20 c 30}} [e f g & h]] (dbg [a b c d e f g h]))

(my-fun (take 5 (range)) {:c 50 :d 100} ["a" "b" "c" "d" "e"]) ; => [(0 1 2 3 4) 20 50 100 "a" "b" "c" ("d" "e")] ....

[listing] .REPL output

{:ns examples.demo, :line 11} dbg: [a b c d e f g h] => | [(0 1 2 3 4) 20 50 100 "a" "b" "c" ("d" "e")]

[#eval-multiple-forms-with-dbgn] You can use dbgn for better results as well. See the detalis for dbgn <<dbgn-examples, here>>.

[source] .... (defn my-fun2 [a {:keys [b c d] :or {d 10 b 20 c 30}} [e f g & h]] (dbgn [a b c d e f g h]))

(my-fun2 (take 5 (range)) {:c 50 :d 100} ["a" "b" "c" "d" "e"]) ; => [(0 1 2 3 4) 20 50 100 "a" "b" "c" ("d" "e")] ....

[listing] .REPL output

{:ns examples.demo, :line 15} dbgn: [a b c d e f g h] => | a => | (0 1 2 3 4) | b => | 20 | c => | 50 | d => | 100 | e => | "a" | f => | "b" | g => | "c" | h => | ("d" "e") | [a b c d e f g h] => | [(0 1 2 3 4) 20 50 100 "a" "b" "c" ("d" "e")]

Generally, dbg prints the evaluated result of the outermost form except for the following eight special cases (pass:q[->], pass:q[->>], pass:q[some->], pass:q[some->>], pass:q[cond->], pass:q[cond->>], let, comp).

Debugging the thread macro pass:q[->] or pass:q[->>]

Using outside the thread macros

When debugging the thread-first macro pass:q[->] or thread-last macro pass:q[->>], dbg prints every expression in the thread macros.

This is an example of thread-first macro pass:q[->].

[source] .... (dbg (-> "a b c d" .toUpperCase (.replace "A" "X") (.split " ") first)) ;=> "X" ....

.REPL output [listing]

{:ns examples.demo, :line 18} dbg: (-> "a b c d" .toUpperCase (.replace "A" "X") (.split " ") first) => | "a b c d" => | "a b c d" | .toUpperCase => | "A B C D" | (.replace "A" "X") => | "X B C D" | (.split " ") => | ["X", "B", "C", "D"] | first => | "X"

Another example.

[source] .... (def person {:name "Mark Volkmann" :address {:street "644 Glen Summit" :city "St. Charles" :state "Missouri" :zip 63304} :employer {:name "Object Computing, Inc." :address {:street "12140 Woodcrest Dr." :city "Creve Coeur" :state "Missouri" :zip 63141}}})

(dbg (-> person :employer :address :city)) ; => "Creve Coeur" ....

.REPL output .... {:ns examples.demo, :line 37} dbg: (-> person :employer :address :city) => | person => | {:name "Mark Volkmann", | :address | {:street "644 Glen Summit", | :city "St. Charles", | :state "Missouri", | :zip 63304}, | :employer | {:name "Object Computing, Inc.", | :address | {:street "12140 Woodcrest Dr.", | :city "Creve Coeur", | :state "Missouri", | :zip 63141}}} | :employer => | {:name "Object Computing, Inc.", | :address | {:street "12140 Woodcrest Dr.", | :city "Creve Coeur", | :state "Missouri", | :zip 63141}} | :address => | {:street "12140 Woodcrest Dr.", | :city "Creve Coeur", | :state "Missouri", | :zip 63141} | :city => | "Creve Coeur" ....

This is an example of thread-last macro pass:q[->>].

[source] .... (def c 5)

(dbg (->> c (+ 3) (/ 2) (- 1))) ; => 3/4 ....

.REPL output .... {:ns examples.demo, :line 42} dbg: (->> c (+ 3) (/ 2) (- 1)) => | c => | 5 | (+ 3) => | 8 | (/ 2) => | 1/4 | (- 1) => | 3/4 ....

Using inside the thread macros

If you want to debug one of the expressions within the thread macro pass:q[->] or pass:q[->>], don't do it like this.

[source] .... (-> {:a [1 2]} (dbg (get :a)) (conj 3)) ; => java.lang.IllegalArgumentException ; Don't know how to create ISeq from: java.lang.Long ....

You will have some exception. Instead, do it like this.

[source] .... (-> {:a [1 2]} (get :a) dbg (conj 3)) ; => [1 2 3] ....

.REPL output .... {:ns examples.demo} dbg: (get {:a [1 2]} :a) => | [1 2] ....

Another example.

[source] .... (->> [-1 0 1 2] (filter pos?) (map inc) dbg (map str)) ; => ("2" "3") ....

.REPL output .... {:ns examples.demo} dbg: (map inc (filter pos? [-1 0 1 2])) => | (2 3) ....

NOTE: In the above examples, dbg doesn't get the :line number information from the Clojure compiler, so it is omitted. I don't know why the Clojure compiler doesn't provide the line number informaton through the code of (:line (meta &form)) inside the thread macros pass:q[->] or pass:q[->>] in this situation. If anyone knows about it, please let me know.

See more examples <<dbg-last, here>>.

[[some-threading-macros]]

Debugging the thread macro pass:q[some->] or pass:q[some->>]

The thread macro pass:q[some->] and pass:q[some->>] are supported in dbg and clog.

[source] .Example 1 .... (dbg (some-> {:a 10} :b inc)) ....

[listing] .REPL output

{:ns examples.lab, :line 54} dbg: (some-> {:a 10} :b inc) => | {:a 10} => | {:a 10} | :b => | nil


[source] .Example 2 .... (dbg (some->> {:x 5 :y 10} :y (- 30))) ....

[listing] .REPL output

{:ns examples.lab, :line 56} dbg: (some->> {:x 5 :y 10} :y (- 30)) => | {:x 5 :y 10} => | {:x 5 :y 10} | :y => | 10 | (- 30) => | 20

[[cond-threading-macros]]

Debugging the thread macro pass:q[cond->] or pass:q[cond->>]

The thread macro pass:q[cond->] and pass:q[cond->>] are supported in dbg and clog.

[source] .Example 1 .... (def a 10)

(dbg (cond-> a (even? a) inc (= a 20) ( 42) (= 5 5) ( 3))) ....

[source] .REPL output .... {:ns examples.lab, :line 60} dbg: (cond-> a (even? a) inc (= a 20) ( 42) (= 5 5) ( 3)) => | a => | 10 | (even? a) => | true | inc => | 11 | (= a 20) => | false | (= 5 5) => | true | (* 3) => | 33 ....

[source] .Example 2 .... (def b 10)

(dbg (cond->> b (even? b) inc (= b 20) (- 42) (= 2 2) (- 30))) ....

[source] .REPL output .... {:ns examples.lab, :line 65} dbg: (cond->> b (even? b) inc (= b 20) (- 42) (= 5 5) (- 30)) => | b => | 10 | (even? b) => | true | inc => | 11 | (= b 20) => | false | (= 5 5) => | true | (- 30) => | 19 ....

Debugging let or comp form

When debugging let form,

[source] .... (dbg (let [a (take 5 (range)) {:keys [b c d] :or {d 10 b 20 c 30}} {:c 50 :d 100} [e f g & h] ["a" "b" "c" "d" "e"]] [a b c d e f g h])) ; => [(0 1 2 3 4) 20 50 100 "a" "b" "c" ("d" "e")] ....

each binding will be printed like this.

.REPL output .... {:ns examples.demo, :line 58} dbg: (let [a (take 5 (range)) {:keys [b c d], :or {d 10, b 20, c 30}} {:c 5 ... => | a => | (0 1 2 3 4) | {:keys [b c d], :or {d 10, b 20, c 30}} => | {:keys [20 50 100], :or {100 10, 20 20, 50 30}} | [e f g & h] => | ["a" "b" "c" & ("d" "e")] ....

When debugging comp form,

[source] .... (def c (dbg (comp inc inc +)))

(c 10 20) ; => 32 .... the result of each function will be printed like this.

.REPL output .... {:ns examples.demo, :line 64} dbg: (comp inc inc +) => | + => | 30 | inc => | 31 | inc => | 32 ....

[[final-option]]

Want to see only the final result of the above macros?

For example, if you want to see only the final result of the pass:q[->], put the option :final or :f like this.

[source] .... (dbg (-> "a b c d" .toUpperCase (.replace "A" "X") (.split " ") first) :final) ;=> "X" ....

.REPL output [listing]

{:ns examples.demo, :line 18} dbg: (-> "a b c d" .toUpperCase (.replace "A" "X") (.split " ") first) => | "X"

This option apliies to pass:q[->], pass:q[->>], pass:q[some->], pass:q[some->>], pass:q[cond->], pass:q[cond->>], let.

[[dbgn-examples]]

dbgn examples

NOTE: The features of clogn are almost the same as those of dbgn.

The macro dbgn is for Clojure/CloujureScript REPL and the macro clogn is for ClojureScript browser console only. The appended n to these two macro names means Nested forms. You can debug every nested form without interrupting code evaluations. This feature is very useful, especially when you analyze other developer's source code.

Simple example

[source] .... (dbgn (defn foo [a b & [c]] (if c ( a b c) ( a b 100))))

(foo 2 3) ; => 600

(foo 2 3 10) ; => 60 ....

[listing] .REPL output

{:ns examples.demo, :line 72} dbgn: (defn foo [a b & [c]] (if c ( a b c) ( a b 100))) =>

| c => | nil | a => | 2 | b => | 3 | ( a b 100) => | 600 | (if c ( a b c) (* a b 100)) => | 600

| c => | 10 | a => | 2 | b => | 3 | ( a b c) => | 60 | (if c ( a b c) (* a b 100)) => | 60

Detailed examples

** Some macros such as when don't have any problem when used in dbgn/clogn.

** Other macros such as defn which has a binding vector can have problem because they have binding symbols which must not be evaluated in dbgn/clogn macros. In case of special forms and those macros in clojure.core namespace, degn/clogn can handle them appropriately.

** In some cases, Clojure developers can write their own macros which dbgn/clogn cannot handle appporiately. So I categorized those macros in clojure.core namespace as the following table and you can register your own macros according to the macro types in the table. I will explain it in <>.

[#macro-type-table, cols="^3m,<7m", options="header"] .Categorized 19 types of macros in dbgn/clogn |===

| Macro types | Macros in clojure.core and special forms | :def-type | def defonce | :defn-type | defn defn- | :fn-type | fn fn* | :let-type | binding dotimes let when-first when-let when-some with-in-str with-local-vars with-open with-out-str with-redefs | :if-let-type | if-let if-some | :letfn-type | letfn | :loop-type | loop | :for-type | for doseq | :case-type | case | :skip-arg-1-type | set! with-precision | :skip-arg-2-type | pass:q[as->] | :skip-arg-1-2-type | | :skip-arg-1-3-type | defmethod | :skip-arg-2-3-type | amap areduce | :skip-arg-1-2-3-type | | :skip-all-args-type | declare defmacro defmulti defstruct extend extend-protocol extend-type import memfn new ns proxy proxy-super quote refer-clojure reify sync var | :skip-form-itself-type | catch definline definterface defprotocol defrecord deftype finally | :expand-type | pass:q[.. -> ->> doto cond-> cond->> condp import some-> some->>] | :dot-type | .

|===

:def-type example

This type of macros have the first argument which must not be evaluated and can have optional doc-string argument.

[source] .... (dbgn (def my-function "my-function doc string" (fn [x] (* x x x))))

(my-function 10) ; => 1000 ....

[listing] .REPL output

{:ns examples.demo, :line 85} dbgn: (def my-function "my-function doc string" (fn [x] ( x x x))) => | (fn [x] ( x x x)) => | #function[example.core/eval24554/result--24229--auto----24555] | (def my-function "my-function doc string" (fn [x] (* x x x))) => | #'example.core/my-function

| x => | 10 | (* x x x) => | 1000

:defn-type example

This type of macros have the binding vector argument which must not be evaluated and can have optional doc-string, attr-map, or prepost-map arguments.

[source] .... (dbgn (defn add "add doc string" [a b] (+ a b)))

(add 10 20) ; => 30 ....

[listing] .REPL output

{:ns examples.demo, :line 92} dbgn: (defn add "add doc string" [a b] (+ a b)) =>

| a => | 10 | b => | 20 | (+ a b) => | 30

{empty} +

You can debug multiple-arity functions as well.

[source] .... (dbgn (defn my-add "my-add doc string" ([] 0) ([a] a) ([a b] (+ a b)) ([a b & more] (apply + a b more))))

; The function body in this case doesn't have any symbol to evaluate, ; so no output will be printed. (my-add) ; => 0

(my-add 10) ; => 10

(my-add 10 20) ; => 30

(my-add 10 20 30 40) ; => 100 ....

[listing] .REPL output

{:ns examples.demo, :line 100} dbgn: (defn my-add "my-add doc string" ([] 0) ([a] a) ([a b] (+ a b)) ([a b ... =>

| a => | 10

| a => | 10 | b => | 20 | (+ a b) => | 30

| + => | #function[clojure.core/+] | a => | 10 | b => | 20 | more => | (30 40) | (apply + a b more) => | 100

{empty} +

You can have multiple dbgn/clogns.

[source] .... (dbgn (defn calc1 [a1 a2] (+ a1 a2))) (dbgn (defn calc2 [s1 s2] (- 100 (calc1 s1 s2)))) (dbgn (defn calc3 [m1 m2] (* 10 (calc2 m1 m2))))

(calc3 2 5) ; => 760 ....

[listing] .REPL output

{:ns examples.demo, :line 113} dbgn: (defn calc1 [a1 a2] (+ a1 a2)) =>

{:ns examples.demo, :line 114} dbgn: (defn calc2 [s1 s2] (- 100 (calc1 s1 s2))) =>

{:ns examples.demo, :line 115} dbgn: (defn calc3 [m1 m2] (* 10 (calc2 m1 m2))) =>

| m1 => | 2 | m2 => | 5

|| s1 => || 2 || s2 => || 5

||| a1 => ||| 2 ||| a2 => ||| 5 ||| (+ a1 a2) => ||| 7 || (calc1 s1 s2) => || 7 || (- 100 (calc1 s1 s2)) => || 93 | (calc2 m1 m2) => | 93 | (* 10 (calc2 m1 m2)) => | 930

:fn-type example

This type of macros have the binding vector argument which must not be evaluated and can have optional function name. So it is a little different from :defn-type macros.

[[enhanced-readability]] [source] .... (dbgn (reduce (fn [acc i] (+ acc i)) 0 [1 5 9])) ; => 15 ....

[listing] .REPL output

{:ns examples.demo, :line 121} dbgn: (reduce (fn [acc i] (+ acc i)) 0 [1 5 9]) => | (fn [acc i] (+ acc i)) => | #function[example.core/eval25034/result--24229--auto----25035] | [1 5 9] => | [1 5 9]

|| acc => || 0 || i => || 1 || (+ acc i) => || 1

|| acc => || 1 || i => || 5 || (+ acc i) => || 6

|| acc => || 6 || i => || 9 || (+ acc i) => || 15 | (reduce (fn [acc i] (clojure.core/binding [debux.common.util/*indent-l ... => | 15

{empty} +

[source] .Another example .... (dbgn (map #(* % 10) [1 5 9])) ; => (10 50 90) ....

[listing] .REPL output

{:ns examples.demo, :line 123} dbgn: (map (fn [p1__2514#] ( p12514# 10)) [1 5 9]) => | (fn* [p113193#] (try (clojure.core/reset! (:evals +debux-dbg-opts+) ... => | #object[example.dbgn$eval13194$result4709auto__13195 0x1b58788a "example.dbgn$eval13194$result4709auto__13195@1b58788a"] | [1 5 9] => | [1 5 9]

|| p113583# => || 1 || (* p113583# 10) => || 10

|| p113583# => || 5 || (* p113583# 10) => || 50

|| p113583# => || 9 || (* p113583# 10) => || 90 | (map (fn [p1__13583#] (clojure.core/binding [debux.common.util/inden ... => | (10 50 90)

:let-type example

This type of macros have the binding vector argument which must not be evaluated.

[source] .... (dbgn (let [a (+ 1 2) [b c] [(+ a 10) (* a 2)]] (- (+ a b) c))) ; => 10 ....

[listing] .REPL output

{:ns examples.demo, :line 127} dbgn: (let [a (+ 1 2) [b c] [(+ a 10) ( a 2)]] (- (+ a b) c)) => | (+ 1 2) => | 3 | a => | 3 | (+ a 10) => | 13 | ( a 2) => | 6 | [(+ a 10) (* a 2)] => | [13 6]

| b => | 13 | (+ a b) => | 16 | c => | 6 | (- (+ a b) c) => | 10 | (let [a (+ 1 2) [b c] [(+ a 10) (* a 2)]] (- (+ a b) c)) => | 10

:if-let-type example

This type of macros are a little different from :let-type macros in that they need only one or two forms in their bodies.

[source] .... (def a* 10)

(dbgn (if-let [s a*] (+ s 100) false)) ; => 110 ....

[listing] .REPL output

{:ns examples.demo, :line 135} dbgn: (if-let [s a] (+ s 100) false) => | a => | 10 | s => | 10 | (+ s 100) => | 110 | (if-let [s a*] (+ s 100) false) => | 110

:letfn-type example

This type of macro has the special binding vector syntax which is a bit different from :fn-type.

[source] .... (dbgn (letfn [(twice [x] ( x 2)) (six-times [y] ( (twice y) 3))] (six-times 15))) ; => 90 ....

[listing] .REPL output

{:ns examples.demo, :line 141} dbgn: (letfn [(twice [x] ( x 2)) (six-times [y] ( (twice y) 3))] (six-time ... => | y => | 15 | x => | 15 | ( x 2) => | 30 | (twice y) => | 30 | ( (twice y) 3) => | 90 | (six-times 15) => | 90 | (letfn [(twice [x] ( x 2)) (six-times [y] ( (twice y) 3))] (six-time ... => | 90

:loop-type example

This type of macro is similiar to :let-type but has a significant difference because the recur has to be placed at the tail positon with the loop form. So it needs a special handling in the implementation of dbgn/clogn. Refer to <> for details.

:for-type example

This type of macros have a little different syntax from :let-type macros, because it can have :let, :when, or :while clause.

[source] .... (dbgn (for [x [0 1 2 3 4 5] :let [y (* x 3)] :when (even? y)] y)) ; => (0 6 12) ....

[listing] .REPL output

{:ns examples.demo, :line 149} dbgn: (for [x [0 1 2 3 4 5] :let [y ( x 3)] :when (even? y)] y) => | [0 1 2 3 4 5] => | [0 1 2 3 4 5] | x => | 0 | ( x 3) => | 0 | y => | 0 | (even? y) => | true

| x => | 1 | (* x 3) => | 3 | y => | 3 | (even? y) => | false

| x => | 2 | (* x 3) => | 6 | y => | 6 | (even? y) => | true

| x => | 3 | (* x 3) => | 9 | y => | 9 | (even? y) => | false

| x => | 4 | (* x 3) => | 12 | y => | 12 | (even? y) => | true

| x => | 5 | ( x 3) => | 15 | y => | 15 | (even? y) => | false | (for [x [0 1 2 3 4 5] :let [y ( x 3)] :when (even? y)] (do (debux.com ... => | (0 6 12)

:case-type example

This type of macro has the special syntax. Refer to the details https://clojuredocs.org/clojure.core/case[here].

[source] .... (dbgn (let [mystr "hello"] (case mystr "" 0 "hello" (count mystr)))) ; => 5 ....

[listing] .REPL output

{:ns examples.demo, :line 156} dbgn: (let [mystr "hello"] (case mystr "" 0 "hello" (count mystr))) => | mystr => | "hello" | (count mystr) => | 5 | (case mystr "" 0 "hello" (count mystr)) => | 5 | (let [mystr "hello"] (case mystr "" 0 "hello" (count mystr))) => | 5

{empty} +

[source] .Another example .... (dbgn (case 'a (x y z) "x, y, or z" "default")) ; => "default" ....

[listing] .REPL output

{:ns examples.demo, :line 161} dbgn: (case (quote a) (x y z) "x, y, or z" "default") => | (case (quote a) (x y z) "x, y, or z" "default") => | "default"

:skip-arg-1-type example

This type of macros have the first argument which must not be evaluated. So dbgn/clogn internally skips the evaluation of this argument.

[source] .... (dbgn (with-precision 10 (/ 1M 6))) ; => 0.1666666667M ....

[listing] .REPL output

{:ns examples.demo, :line 167} dbgn: (with-precision 10 (/ 1M 6)) => | (/ 1M 6) => | 0.1666666667M | (with-precision 10 (/ 1M 6)) => | 0.1666666667M

:skip-arg-2-type example

This type of macros have the second argument which must not be evaluated. So dbgn/clogn internally skips the evaluation of this argument.

[source] .... (dbgn (as-> 0 n (inc n) (inc n))) ; => 2 ....

[listing] .REPL output

{:ns examples.demo, :line 171} dbgn: (as-> 0 n (inc n) (inc n)) => | n => | 0 | (inc n) => | 1 | n => | 1 | (inc n) => | 2 | (as-> 0 n (inc n) (inc n)) => | 2

:skip-arg-1-2-type example

This type of macros have the first and second arguments which must not be evaluated. So dbgn/clogn internally skips the evaluation of those arguments. However, I can't find this type of macros in clojure.core namespace but add this type for completeness and the future possibilities of this type of macros.

:skip-arg-1-3-type example

This type of macros have the first and third arguments which must not be evaluated. So dbgn/clogn internally skips the evaluation of those arguments.

[source] .... (defmulti greeting (fn [x] (:language x)))

(dbgn (defmethod greeting :english [map] (str "English greeting: " (:greeting map))))

(dbgn (defmethod greeting :french [map] (str "French greeting: " (:greeting map))))

(def english-map {:language :english :greeting "Hello!"}) (def french-map {:language :french :greeting "Bonjour!"})

(greeting english-map) ; => "English greeting: Hello!"

(greeting french-map) ; => "French greeting: Bonjour!" ....

[listing] .REPL output

{:ns examples.demo, :line 180} dbgn: (defmethod greeting :english [map] (str "English greeting: " (:greetin ... => | (defmethod greeting :english [map] (str "English greeting: " (:greetin ... => | #object[clojure.lang.MultiFn 0x193bb809 "clojure.lang.MultiFn@193bb809"]

{:ns examples.demo, :line 183} dbgn: (defmethod greeting :french [map] (str "French greeting: " (:greeting ... => | (defmethod greeting :french [map] (str "French greeting: " (:greeting ... => | #object[clojure.lang.MultiFn 0x193bb809 "clojure.lang.MultiFn@193bb809"]

| map => | {:language :english, :greeting "Hello!"} | (:greeting map) => | "Hello!" | (str "English greeting: " (:greeting map)) => | "English greeting: Hello!"

| map => | {:language :french, :greeting "Bonjour!"} | (:greeting map) => | "Bonjour!" | (str "French greeting: " (:greeting map)) => | "French greeting: Bonjour!"

:skip-arg-2-3-type example

This type of macros have the second and third arguments which must not be evaluated. So dbgn/clogn internally skips the evaluation of those arguments.

[source] .... (let [xs (float-array [1 2 3])] (dbgn (areduce xs i ret (float 0) (+ ret (aget xs i))))) ; => 6.0 ....

[listing] .REPL output

{:ns examples.demo, :line 195} dbgn: (areduce xs i ret (float 0) (+ ret (aget xs i))) => | xs => | [1.0, 2.0, 3.0] | (float 0) => | 0.0 | ret => | 0.0 | i => | 0 | (aget xs i) => | 1.0 | (+ ret (aget xs i)) => | 1.0 | ret => | 1.0 | i => | 1 | (aget xs i) => | 2.0 | (+ ret (aget xs i)) => | 3.0 | ret => | 3.0 | i => | 2 | (aget xs i) => | 3.0 | (+ ret (aget xs i)) => | 6.0 | (areduce xs i ret (float 0) (+ ret (aget xs i))) => | 6.0

:skip-arg-1-2-3-type example

This type of macros have the first, second and third arguments which must not be evaluated. So dbgn/clogn internally skips the evaluation of those arguments. However, I can't find this type of macros in clojure.core namespace but add this type for completeness and the future possibilities of this type of macros.

:skip-all-args-type example

This type of macros ignores all the arguments and prints the outermost form and its result.

[source] .... (dbgn (defmacro unless [pred a b] `(if (not ~pred) ~a ~b))) ....

[listing] .REPL output

{:ns examples.demo, :line 200} dbgn: (defmacro unless [pred a b] (clojure.core/seq (clojure.core/concat (cl ... => | (defmacro unless [pred a b] (clojure.core/seq (clojure.core/concat (cl ... => | #'user/unless

:skip-form-itself-type example

This type of macros ignores the form itself and prints nothing.

[source] .... (dbgn (try (/ 1 0) (catch ArithmeticException e (str "caught exception: " (.getMessage e))))) ....

[listing] .REPL output

{:ns examples.demo, :line 205} dbgn: (try (/ 1 0) (catch ArithmeticException e (str "caught exception: " (. ... => | (try (/ 1 0) (catch ArithmeticException e (str "caught exception: " (. ... => | "caught exception: Divide by zero"

NOTE: The evaluated resuts of the catch form are not printed in the above example.

:expand-type example

This type of macros will be expanded and then the output will be printed.

[source] .... (dbgn (-> "a b c d" .toUpperCase (.replace "A" "X") (.split " ") first)) ; => "X" ....

[listing] .REPL output

{:ns examples.demo, :line 211} dbgn: (-> "a b c d" .toUpperCase (.replace "A" "X") (.split " ") first) => | (.toUpperCase "a b c d") => | "A B C D" | (.replace (.toUpperCase "a b c d") "A" "X") => | "X B C D" | (.split (.replace (.toUpperCase "a b c d") "A" "X") " ") => | ["X", "B", "C", "D"] | (first (.split (.replace (.toUpperCase "a b c d") "A" "X") " ")) => | "X"

{empty} +

[source] .Another example .... (dbgn (.. "fooBAR" toLowerCase (contains "ooba"))) ; => true ....

[listing] .REPL output

{:ns examples.demo, :line 217} dbgn: (.. "fooBAR" toLowerCase (contains "ooba")) => | (. "fooBAR" toLowerCase) => | "foobar" | (. (. "fooBAR" toLowerCase) (contains "ooba")) => | true

{empty} +

[source] .Yet another example .... (let [x 1 y 2] (dbgn (cond-> [] (odd? x) (conj "x is odd") (zero? (rem y 3)) (conj "y is divisible by 3") (even? y) (conj "y is even")))) ; => ["x is odd" "y is even"] ....

[listing] .REPL output

{:ns examples.demo, :line 220} dbgn: (cond-> [] (odd? x) (conj "x is odd") (zero? (rem y 3)) (conj "y is di ... => | [] => | [] | x => | 1 | (odd? x) => | true | G14051 => | [] | (conj G14051 "x is odd") => | ["x is odd"] | (if (odd? x) (conj G14051 "x is odd") G14051) => | ["x is odd"] | y => | 2 | (rem y 3) => | 2 | (zero? (rem y 3)) => | false | G14051 => | ["x is odd"] | (if (zero? (rem y 3)) (conj G14051 "y is divisible by 3") G__14051) => | ["x is odd"]

| (even? y) => | true | (conj G14051 "y is even") => | ["x is odd" "y is even"] | (if (even? y) (conj G14051 "y is even") G14051) => | ["x is odd" "y is even"] | (clojure.core/let [G14051 [] G14051 (if (odd? x) (conj G14051 "x ... => | ["x is odd" "y is even"]

:dot-type example

[source] .... (dbgn (. (java.util.Date.) getMonth)) ; => 5 ....

[listing] .REPL output

{:ns examples.demo, :line 227} dbgn: (. (java.util.Date.) getMonth) => | (java.util.Date.) => | #inst "2017-06-27T08:04:46.480-00:00" | (. (java.util.Date.) getMonth) => | 5

[#recur-support]

Limited support for the form including recur

[cols="^1m,^1m,^1m", options="header"] .The forms including recur |===

| | dbgn | clogn | loop ~ recur | O | O | defn/defn-/fn ~ recur | △ | △

|===

loop ~ recur

You can see the evaluated results of the form which incldues loop ~ recur by using dbgn in Clojure and ClojureScript.

[source] .... (dbgn (loop [acc 1 n 3] (if (zero? n) acc (recur (* acc n) (dec n))))) ; => 6 ....

.REPL output [listing]

{:ns examples.demo, :line 233} dbgn: (loop [acc 1 n 3] (if (zero? n) acc (recur (* acc n) (dec n)))) =>

| n => | 3 | (zero? n) => | false | acc => | 1 | (* acc n) => | 3 | (dec n) => | 2

| n => | 2 | acc => | 3 | (* acc n) => | 6 | (dec n) => | 1

| n => | 1 | acc => | 6 | (dec n) => | 0

| n => | 0 | (zero? n) => | true | (loop [acc 1 n 3] (debux.common.util/insert-blank-line) (if (zero? n) ... => | 6

{empty} +

[source] .Another example .... (dbgn (defn fact [num] (loop [acc 1 n num] (if (zero? n) acc (recur (* acc n) (dec n))))))

(fact 3) ; => 6 ....

[listing] .REPL output

{:ns examples.demo, :line 239} dbgn: (defn fact [num] (loop [acc 1 n num] (if (zero? n) acc (recur (* acc n ... =>

| num => | 3

| n => | 3 | (zero? n) => | false | acc => | 1 | (* acc n) => | 3 | (dec n) => | 2

| n => | 2 | acc => | 3 | (* acc n) => | 6 | (dec n) => | 1

| n => | 1 | acc => | 6 | (dec n) => | 0

| n => | 0 | (zero? n) => | true | (loop [acc 1 n num] (debux.common.util/insert-blank-line) (if (zero? n ... => | 6

defn/defn-/fn ~ recur without loop

IMPORTANT: If you use dbgn in defn/defn-/fn ~ recur form without loop, you will have the following exception. I am sorry about it, but this is inevitable due to the implementation restriction.

[source] .... (dbgn (defn factorial [acc n] (if (zero? n) acc (recur (* acc n) (dec n))))) ....

.REPL output [listing]

  1. Caused by java.lang.UnsupportedOperationException Cannot recur across try

{empty} +

TIP: However, if you temporarily replace recur with function name itself, you can debug the form as follows. Be careful not to forget to recover function name itself to recur after debugging.

[source] .... (dbgn (defn factorial [acc n] (if (zero? n) acc (factorial (* acc n) (dec n)))))

(factorial 1 3) ; => 6 ....

.REPL output [listing]

{:ns examples.demo, :line 248} dbgn: (defn factorial [acc n] (if (zero? n) acc (factorial (* acc n) (dec n) ... =>

| n => | 3 | (zero? n) => | false | acc => | 1 | (* acc n) => | 3 | (dec n) => | 2

|| n => || 2 || (zero? n) => || false || acc => || 3 || (* acc n) => || 6 || (dec n) => || 1

||| n => ||| 1 ||| (zero? n) => ||| false ||| acc => ||| 6 ||| (* acc n) => ||| 6 ||| (dec n) => ||| 0

|||| n => |||| 0 |||| (zero? n) => |||| true |||| acc => |||| 6 |||| (if (zero? n) acc (factorial ( acc n) (dec n))) => |||| 6 ||| (factorial ( acc n) (dec n)) => ||| 6

[#register-macros]

How to register your own macros in using dbgn/clogn

[source] .API format .... (register-macros! macro-type macros)

(show-macros) (show-macros macro-type) ....

Clojure example

[source] .example/core.clj .... (defmacro my-let [bindings & body] `(let ~bindings ~@body))

;; Registering your own macro (register-macros! :let-type [my-let])

(dbg (show-macros :let-type)) (dbg (show-macros))

(dbgn (my-let [a 10 b (+ a 10)] (+ a b))) ....

[listing] .REPL output

{:ns examples.demo, :line 261} dbg: (show-macros :let-type) => | {:let-type | #{clojure.core/when-let example.dbgn/my-let clojure.core/let | clojure.core/with-local-vars clojure.core/when-some clojure.core/dotimes | clojure.core/with-open clojure.core/with-redefs clojure.core/binding | clojure.core/with-in-str clojure.core/with-out-str clojure.core/when-first}}

{:ns examples.demo, :line 262} dbg: (show-macros) => | {:fn-type #{clojure.core/fn fn*}, | :skip-arg-1-2-3-type #{}, | :skip-form-itself-type | #{clojure.core/definterface clojure.core/defrecord clojure.core/deftype | finally clojure.core/gen-class clojure.core/definline catch | clojure.core/gen-interface clojure.core/defprotocol}, | :case-type #{clojure.core/case}, | :skip-arg-2-3-type #{clojure.core/areduce clojure.core/amap}, | :skip-arg-1-type #{clojure.core/with-precision set!}, | :let-type | #{clojure.core/when-let example.dbgn/my-let clojure.core/let | clojure.core/with-local-vars clojure.core/when-some | clojure.core/dotimes clojure.core/with-open clojure.core/with-redefs | clojure.core/binding clojure.core/with-in-str | clojure.core/with-out-str clojure.core/when-first}, | :skip-arg-2-type #{clojure.core/as->}, | :defn-type #{clojure.core/defn clojure.core/defn-}, | :loop-type #{clojure.core.async/go-loop clojure.core/loop}, | :for-type #{clojure.core/for clojure.core/doseq}, | :def-type #{clojure.core/defonce def}, | :if-let-type #{clojure.core/if-let clojure.core/if-some}, | :letfn-type #{clojure.core/letfn}, | :dot-type #{.}, | :skip-arg-1-2-type #{}, | :skip-all-args-type | #{clojure.core/proxy-super clojure.core/defmacro clojure.core/sync | clojure.core/declare clojure.core/refer-clojure clojure.core/memfn | clojure.core/extend-type new clojure.core/defstruct | clojure.core/defmulti clojure.core/ns clojure.core/proxy | clojure.core/extend clojure.core/extend-protocol var quote | clojure.core/reify clojure.core/import}, | :expand-type | #{clojure.core/doto clojure.core/->> clojure.core/some->> | clojure.core/.. clojure.core/-> clojure.core/some-> | clojure.core/cond-> clojure.core/condp clojure.core/import | clojure.core/cond->>}, | :skip-arg-1-3-type #{clojure.core/defmethod}}

{:ns examples.demo, :line 264} dbgn: (my-let [a 10 b (+ a 10)] (+ a b)) => | a => | 10 | (+ a 10) => | 20

| b => | 20 | (+ a b) => | 30 | (my-let [a 10 b (+ a 10)] (debux.common.util/insert-blank-line) (+ a b ... => | 30

ClojureScript example

[source] .example/macro.clj .... (ns example.macro)

(defmacro my-let [bindings & body] `(let ~bindings ~@body)) ....

[source] .example/core.cljs .... (ns examples.demo (:require [debux.cs.core :as d :refer-macros [clog clogn dbg dbgn break]]) (:require-macros [examples.macro :refer [my-let]]))

;; Registering your own macro (d/register-macros! :let-type [my-let])

(dbg (d/show-macros :let-type)) (dbg (d/show-macros))

(clogn (my-let [a 10 b (+ a 10)] (+ a b))) ....

[listing] .Output

{:ns examples.demo, :line 261} dbg: (d/show-macros :let-type) => | {:let-type | #{example.macro/my-let cljs.core/with-redefs cljs.core/binding | cljs.core/when-first cljs.core/let cljs.core/with-out-str | cljs.core/when-let cljs.core/when-some cljs.core/dotimes}}

{:ns examples.demo, :line 262} dbg: (d/show-macros) => | {:fn-type #{fn* cljs.core/fn}, | :skip-arg-1-2-3-type #{}, | :skip-form-itself-type | #{finally cljs.core/defprotocol cljs.core/defrecord cljs.core/deftype | cljs.core/js-comment cljs.core/js-inline-comment catch}, | :case-type #{cljs.core/case}, | :skip-arg-2-3-type #{cljs.core/amap cljs.core/areduce}, | :skip-arg-1-type #{set! cljs.core/this-as}, | :let-type | #{example.macro/my-let cljs.core/with-redefs cljs.core/binding | cljs.core/when-first cljs.core/let cljs.core/with-out-str | cljs.core/when-let cljs.core/when-some cljs.core/dotimes}, | :skip-arg-2-type #{cljs.core/as->}, | :defn-type #{cljs.core/defn- cljs.core/defn}, | :loop-type #{cljs.core/loop}, | :for-type #{cljs.core/doseq cljs.core/for}, | :def-type #{cljs.core/defonce def}, | :if-let-type #{cljs.core/if-some cljs.core/if-let}, | :letfn-type #{cljs.core/letfn}, | :dot-type #{.}, | :skip-arg-1-2-type #{}, | :skip-all-args-type | #{cljs.core/simple-benchmark cljs.core/defmulti cljs.core/specify! | cljs.core/goog-define cljs.core/import-macros cljs.core/specify | cljs.core/use cljs.core/use-macros cljs.core/extend-protocol new | cljs.core/import cljs.core/declare cljs.core/reify cljs.core/require | cljs.core/comment cljs.core/memfn cljs.core/require-macros var | quote cljs.core/refer-clojure cljs.core/extend-type cljs.core/defmacro}, | :expand-type | #{cljs.core/.. cljs.core/some-> cljs.core/-> cljs.core/cond->> | cljs.core/import cljs.core/doto cljs.core/condp cljs.core/cond-> | cljs.core/some->> cljs.core/->>}, | :skip-arg-1-3-type #{cljs.core/defmethod}}

image::register-macros.png[title="register-macros! example", width=750]

[#multiple-use]

Multiple use of dbg and dbgn

NOTE: This feature applies to the multiple use of clog and clogn as well.

dbg inside dbgn or vice versa

dbg can be used inside dbgn or vice versa. For example, if you want to see the printed results of pass:q[->], pass:q[->>], let or comp of dbg in more compact way than only using dbgn, do it like this.

[source] .... (defn my-fun [a b c] (dbgn (+ a b c (dbg (->> (range (- b a)) (map #(* % %)) (filter even?) (take a) (reduce +))))))

(my-fun 10 20 100) ; => 250 ....

[listing] .REPL output:

{:ns examples.demo, :line 271} dbgn: (+ a b c (->> (range (- b a)) (map (fn [p1__3949#] ( p1__3949# ... => | a => | 10 | b => | 20 | c => | 100

|{:ns examples.demo, :line 272} |dbg: (->> (range (- b a)) (map (fn [p1__41#] ( p141# p141#))) (filter ... => || (range (- b a)) => || (0 1 2 3 4 5 6 7 8 9) || (map (fn [p1__41#] ( p141# p141#))) => || (0 1 4 9 16 25 36 49 64 81) || (filter even?) => || (0 4 16 36 64) || (take a) => || (0 4 16 36 64) || (reduce +) => || 120 | (+ a b c (->> (range (- b a)) (map (fn [p1__41#] ( p141# p1 ... => | 250

In other words, dbg can be used selectively inside dbgn like this, if you want to avoid printing a deeply nested structure inside dbgn.

[source] .... (let [a 10 b 9 c 8 d 7 e 6 f 5 g 4 h 3] (dbgn ( a b (dbg (+ c d (- e f ( g h))))))) ; => 360 ....

The above dbg will prevent dbgn from printing (+ c d (- e f (* g h)))) recursively.

[listing] .REPL output

{:ns example.demo, :line 15} dbgn: ( a b (+ c d (- e f ( g h)))) => | a => | 10 | b => | 9

|{:ns example.demo, :line 15} |dbg: (+ c d (- e f ( g h))) => || 4 | ( a b (dbg (+ c d (- e f (* g h))))) => | 360

Multiple dbgn and dbg

You can use multiple dbgn or dbg.

[source] .Example 1 .... (def n 10)

(defn add [a b] (dbgn (+ a b)))

(defn mul [a b] (dbgn (* a b)))

(dbgn (+ n (mul 3 4) (add 10 20))) ; => 52 ....

[listing] .REPL output

{:ns examples.demo, :line 290} dbgn: (+ n (mul 3 4) (add 10 20)) => | n => | 10

|{:ns examples.demo, :line 288} |dbgn: ( a b) => || a => || 3 || b => || 4 || ( a b) => || 12 | (mul 3 4) => | 12

|{:ns examples.demo, :line 285} |dbgn: (+ a b) => || a => || 10 || b => || 20 || (+ a b) => || 30 | (add 10 20) => | 30 | (+ n (mul 3 4) (add 10 20)) => | 52

{empty} +

[source] .Example 2 .... (def n 10)

(defn add2 [a b] (dbg (+ a b)))

(defn mul2 [a b] (dbg (* a b)))

(dbgn (+ n (mul2 3 4) (add2 10 20))) ; => 52 ....

[listing] .REPL output

{:ns examples.demo, :line 299} dbgn: (+ n (mul2 3 4) (add2 10 20)) => | n => | 10

|{:ns examples.demo, :line 297} |dbg: (* a b) => || 12 | (mul2 3 4) => | 12

|{:ns examples.demo, :line 294} |dbg: (+ a b) => || 30 | (add2 10 20) => | 30 | (+ n (mul2 3 4) (add2 10 20)) => | 52

[[safe-debugging-in-multi-threads]]

Safe debugging in multi-threads programming.

The Debux macros dbg, dbgn, dbg-last in Clojure support the safe debugging in multi-threads since the version 0.7.1.

The following example shows that the messages produced by the dbg are printed in their own separate units, not mixed by one another.

[source] .... (defn my-fn [thread-no] (dbg (-> "a b c d" .toUpperCase (.replace "A" "X") (.split " ") first) :msg (str "thread-no: " thread-no)))

(future (Thread/sleep 1000) (my-fn 1))

(future (Thread/sleep 1000) (my-fn 2))

(future (Thread/sleep 1000) (my-fn 3))

(dbg (* 2 5))

(shutdown-agents) ....

[listing] .REPL output

{:ns examples.lab, :line 45} dbg: (* 2 5) => | 10

{:ns examples.lab, :line 26} dbg: (-> "a b c d" .toUpperCase (.replace "A" "X") (.split " ") first) <thread-no: 1> => | "a b c d" => | "a b c d" | .toUpperCase => | "A B C D" | (.replace "A" "X") => | "X B C D" | (.split " ") => | ["X", "B", "C", "D"] | first => | "X"

{:ns examples.lab, :line 26} dbg: (-> "a b c d" .toUpperCase (.replace "A" "X") (.split " ") first) <thread-no: 3> => | "a b c d" => | "a b c d" | .toUpperCase => | "A B C D" | (.replace "A" "X") => | "X B C D" | (.split " ") => | ["X", "B", "C", "D"] | first => | "X"

{:ns examples.lab, :line 26} dbg: (-> "a b c d" .toUpperCase (.replace "A" "X") (.split " ") first) <thread-no: 2> => | "a b c d" => | "a b c d" | .toUpperCase => | "A B C D" | (.replace "A" "X") => | "X B C D" | (.split " ") => | ["X", "B", "C", "D"] | first => | "X"

[[dbgt]]

dbgt examples

NOTE: The features of clogt are almost the same as those of dbgt.

dbgt and clogt macros are for debugging transducers.

Special thanks to link:https://github.com/green-coder/transducer-exercises/blob/master/solution/debug.clj[Vincent Cantin] for the idea and inspiration for my writing these macros.

Debugging a single transducer

[source] .Example .... (transduce (dbgt (filter odd?)) conj (range 5)) ....

[listing] .REPL output

{:ns examples.lab, :line 5} dbgt: (filter odd?) |> 0 |< []

|> 1 |< [1]

|> 2 |< [1]

|> 3 |< [1 3]

|> 4 |< [1 3]

Debugging composed transducers

[source] .Example .... (transduce (dbgt (comp (map inc) (filter odd?))) conj (range 5)) ....

[listing] .REPL output

{:ns examples.lab, :line 8} dbgt: (comp (map inc) (filter odd?)) |> 0 ||> 1 ||< [1] |< [1]

|> 1 ||> 2 ||< [1] |< [1]

|> 2 ||> 3 ||< [1 3] |< [1 3]

|> 3 ||> 4 ||< [1 3] |< [1 3]

|> 4 ||> 5 ||< [1 3 5] |< [1 3 5]

Various options

[cols="^1m,^1m,^1m,^1m,^1m,^1m,^1m,^1m", options="header"] .debux macro options |===

| Optio ns | dbg | dbgn | clog | clogn | dbgt | clogt | break

| string | O | O | O | O | O | O | O | :msg or :m | O | O | O | O | O | O | X | number | O | O | O | O | O | O | X | :if | O | O | O | O | O | O | O | :locals or :l | O | O | O | O | O | O | X | :print or :p | O | X | O | X | X | X | X | :dup | X | 0 | X | 0 | X | X | X | :level | O | O | O | O | O | O | X | :final or :f | O | X | O | X | X | X | X | :style or :s | X | X | O | O | X | O | X | :once or :o | X | X | O | X | X | X | X | :js | X | X | O | O | X | X | X

|===

String option

You can add your own message in a string and it will be printed between less-than and more-than signs like this.

[source] .... (dbg (repeat 5 "x") "5 times repeat")) ; => ("x" "x" "x" "x" "x") ....

.REPL output .... {:ns examples.demo, :line 305} dbg: (repeat 5 "x") <5 times repeat> => | ("x" "x" "x" "x" "x") ....

[[msg-option]]

:msg (or :m) option

Sometimes you need to create the message dynamically. This option can be useful in the multi-threads programming like this.

[source] ....

(defn my-fn2 [thread-no] (dbg (* thread-no (+ 10 20)) :msg (str "thread-no: " thread-no)))

(future (Thread/sleep 3000) (my-fn2 1))

(future (Thread/sleep 1000) (my-fn2 2))

(future (Thread/sleep 2000) (my-fn2 3))

(dbg (* 10 5))

(shutdown-agents) ....

[listing] .REPL output

{:ns examples.lab, :line 20} dbg: (* 10 5) => | 50

{:ns examples.lab, :line 6} dbg: (* thread-no (+ 10 20)) <thread-no: 2> => | 60

{:ns examples.lab, :line 6} dbg: (* thread-no (+ 10 20)) <thread-no: 3> => | 90

{:ns examples.lab, :line 6} dbg: (* thread-no (+ 10 20)) <thread-no: 1> => | 30

If the above String option and this :msg option both exist, the :msg option has the higher precedence.

[[number-option]]

Number option

If you don't specify a number after the form returning the coll data type, debux macros will print the default 100 items.

[source] .... (dbgn (count (range 200))) ; => 200 ....

.REPL output [listing]

{:ns examples.demo, :line 309} dbgn: (count (range 200)) => | (range 200) => | (0 1 2 ...... 99 ...) | (count (range 200)) => | 200

So, if you want to print less or more than default 100 items, specify the number explicitly like this.

.... (dbgn (count (range 200)) 200) ; => 200 ....

.REPL output [listing]

{:ns examples.demo, :line 311} dbgn: (count (range 200)) => | (range 200) => | (0 1 2 ...... 199) | (count (range 200)) => | 200

The same rule applies to the case of evaluating an infinite lazy-seq. If you omit the number in evaluating an infinite lazy-seq, in the same manner it will print default 100 elements to prevent OutOfMemoryError.

[source] .... (dbgn (take 5 (range))) ; => (0 1 2 3 4) ....

.REPL output .... {:ns examples.demo, :line 313} dbgn: (take 5 (range)) => | (range) => | (0 1 2 ...... 99 ...) | (take 5 (range)) => | (0 1 2 3 4) ....

[[nested-coll]] The elements of the nested coll types will be printed as much as specified numbers.

[source] .... (def m {:list (range) :vector (vec (range 100)) :map (zipmap (range 100) (cycle [:a :b :c])) :set (set (range 100))})

(dbgn (count m) 5) ; => 4 ....

[listing] .REPL output

{:ns examples.demo, :line 328} dbgn: (count m) => | m => | {:list (0 1 2 3 4 ...), | :vector [0 1 2 3 4 ...], | :map {0 :a, 65 :c, 70 :b, 62 :c, 74 :c, ...}, | :set #{0 65 70 62 74 ...}} | (count m) => | 4

NOTE: The Clojure source codes are the Clojure data structures as well, which is known as homoiconcity. When the debux macros traverse the Clojure source code trees, they enter the lists or vectors within the trees but don't enter the maps or sets within the trees. So the codes themselves within the above map m aren't printed in the middle of the evaluated results, because they are wrapped inside the map m.

[[set-print-length]] If you want to change the default number globally, use set-print-length! function like this.

[source] .... ;; in Clojure (set-print-length! 10)

(dbgn (take 5 (range))) ; => (0 1 2 3 4) ....

[listing] .REPL output

{:ns examples.demo, :line 318} dbgn: (take 5 (range)) => | (range) => | (0 1 2 3 4 5 6 7 8 9 ...) | (take 5 (range)) => | (0 1 2 3 4)

[source] .... ;; in ClojureScript (ns example.core (:require [debux.cs.core :as d :refer-macros [clog clogn dbg dbgn break]]))

(d/set-print-length! 10)

(clogn (take 5 (range))) ....

:if option

You can set :if option like this.

[source] .... (doseq [i (range 10)] (dbg i :if (even? i))) ; => (0 1 2 3 4 5 6 7 8 9) ....

.REPL output .... {:ns examples.demo, :line 333} dbg: i => | 0

{:ns examples.demo, :line 333} dbg: i => | 2

{:ns examples.demo, :line 333} dbg: i => | 4

{:ns examples.demo, :line 333} dbg: i => | 6

{:ns examples.demo, :line 333} dbg: i => | 8 ....

[[local-option]]

:locals (or :l) option

The :locals option is added, according to the request link:https://github.com/philoskim/debux/issues/19[#issue 19].

[source] .... (let [x 10 y 20] (dbg (+ x y) :locals) (dbg (-> 100 inc inc) :l)

(dbgn (-> 200 inc inc) :l)) ....

[source] .REPL output .... {:ns examples.lab, :line 11} dbg: (+ x y) => | :locals => | {x 10, y 20}

| 30

{:ns examples.lab, :line 12} dbg: (-> 100 inc inc) => | :locals => | {x 10, y 20}

| 100 => | 100 | inc => | 101 | inc => | 102

{:ns examples.lab, :line 14} dbgn: (-> 200 inc inc) => | :locals => | {x 10, y 20}

| (inc 200) => | 201 | (inc (inc 200)) => | 202 ....

[[print-option]]

:print (or :p) option

IMPORTANT: The :print (or :p in brief) option applies only to dbg/clog.

If you don't want to see the evaluated result itself but the result applied to another operations, use ':print one-arg-fn' (or ':p one-arg-fn') option like this.

[source] .... (+ 10 (dbg (* 20 30) :print #(type %))) ; => 610

;; equivalent to the above (+ 10 (dbg (* 20 30) :print type)) ; => 610 ....

[listing] .REPL output

{:ns examples.demo, :line 337} dbg: (* 20 30) => | java.lang.Long

The above example prints java.lang.Long, not 600

[source] .... (def person {:name "Mark Volkmann" :address {:street "644 Glen Summit" :city "St. Charles" :state "Missouri" :zip 63304} :employer {:name "Object Computing, Inc." :address {:street "12140 Woodcrest Dr." :city "Creve Coeur" :state "Missouri" :zip 63141}}})

(dbg person :p #(get-in % [:employer :address :city])) ....

[listing] .REPL output

{:ns examples.demo, :line 339} dbg: person => | "Creve Coeur"

The above example prints the most inner :city part, not person itself.

[#dup-option]

:dup option

The same duplicate evaluated results are not printed by default as follows.

[source] .... (dbgn (def my-function "my-function doc string" (fn [x] (* x x x))))

(my-function 10) ; => 1000 ....

[listing] .REPL output

{:ns examples.demo, :line 343} dbgn: (def my-function "my-function doc string" (fn [x] ( x x x))) => | (fn [x] ( x x x)) => | #function[example.core/eval24554/result--24229--auto----24555] | (def my-function "my-function doc string" (fn [x] (* x x x))) => | #'example.core/my-function

| x => | 10 | (* x x x) => | 1000

However, you can print the same duplicate evaluated values by :dup option.

[source] .... (dbgn (def my-function "my-function doc string" (fn [x] (* x x x))) :dup)

(my-function 10) ; => 1000 ....

[listing] .REPL output

{:ns examples.demo, :line 349} dbgn: (def my-function "my-function doc string" (fn [x] ( x x x))) => | (fn [x] ( x x x)) => | #function[example.core/eval24554/result--24229--auto----24555] | (def my-function "my-function doc string" (fn [x] (* x x x))) => | #'example.core/my-function

| x => | 10 | x => | 10 | x => | 10 | (* x x x) => | 1000

You will sometimes need to print every duplicate evaluated value to see exactly what's going on.

Compare the results of the next two examples.

[source] .... (dbgn (loop [acc 1 n 3] (if (zero? n) acc (recur (* acc n) (dec n))))) ; => 6

(dbgn (loop [acc 1 n 3] (if (zero? n) acc (recur (* acc n) (dec n)))) :dup) ; => 6 ....

[listing] .REPL output

{:ns examples.demo, :line 355} dbgn: (loop [acc 1 n 3] (if (zero? n) acc (recur (* acc n) (dec n)))) =>

| n => | 3 | (zero? n) => | false | acc => | 1 | (* acc n) => | 3 | (dec n) => | 2

| n => | 2 | acc => | 3 | (* acc n) => | 6 | (dec n) => | 1

| n => | 1 | acc => | 6 | (dec n) => | 0

| n => | 0 | (zero? n) => | true | (loop [acc 1 n 3] (debux.common.util/insert-blank-line) (if (zero? n) ... => | 6

{:ns examples.demo, :line 360} dbgn: (loop [acc 1 n 3] (if (zero? n) acc (recur (* acc n) (dec n)))) =>

| n => | 3 | (zero? n) => | false | acc => | 1 | n => | 3 | (* acc n) => | 3 | n => | 3 | (dec n) => | 2

| n => | 2 | (zero? n) => | false | acc => | 3 | n => | 2 | (* acc n) => | 6 | n => | 2 | (dec n) => | 1

| n => | 1 | (zero? n) => | false | acc => | 6 | n => | 1 | (* acc n) => | 6 | n => | 1 | (dec n) => | 0

| n => | 0 | (zero? n) => | true | acc => | 6 | (loop [acc 1 n 3] (debux.common.util/insert-blank-line) (if (zero? n) ... => | 6

[[with-level]]

:level option

You can set the debug level by using with-level macro and specify :level option as follows. You can specify the debug levels with any positive numbers including the floating point numbers. The with-level macro uses a dynamic var of Clojure internally, so you can nest with-level macros to whatever level you want.

[source] .Example 1 .... ;; The default debug level is 0. (dbg (+ 10 20)) (dbg (+ 10 20 3) :level 3) (dbg (+ 10 20 5) :level 5) ....

[listing] .REPL output

{:ns examples.lab, :line 18} dbg: (+ 10 20) => | 30

{:ns examples.lab, :line 19} dbg: (+ 10 20 3) => | 33

{:ns examples.lab, :line 20} dbg: (+ 10 20 5) => | 35

[source] .Example 2 .... (with-level 3 (dbg (+ 10 20)) (dbg (+ 10 20 3) :level 3) (dbg (+ 10 20 5) :level 5)) ....

[listing] .REPL output

{:ns examples.lab, :line 12} dbg: (+ 10 20 3) => | 33

{:ns examples.lab, :line 13} dbg: (+ 10 20 5) => | 35

[source] .Example 3 .... (defn my-add [a b] (dbg (+ a b) :level 2))

(defn my-sub [a b] (dbg (- a b) :level 3))

(with-level 3 (dbg (my-add 10 20)) (dbg (my-sub 100 10))

(with-level 0 (dbg (* 10 2)))) ....

[listing] .REPL output

{:ns examples.lab, :line 20} dbg: (- a b) => | 90

{:ns examples.lab, :line 27} dbg: (* 10 2) => | 20

:final (or :f) option

See the details <<final-option, here>>.

[[style-option]]

:style (or :s) option (CSS Styling: CLJS only)

The following is the example of using clog and clogn in Chrome browser.

[source] .example/core.cljs .... (ns example.core (:require [debux.cs.core :as d :refer-macros [clog clogn dbg dbgn break]]))

(clog (repeat 5 "x") "5 times repeat") (clogn (repeat 5 (repeat 5 "x")) "25 times repeat") ....

image::clog.png[title="clog and clogn example", width=650]

Predefined style keywords

You can style the form, using the following predefined keywords.

[cols="^,^", options="header", width="30"] |===

| keyword | abbreviation | :style | :s | :error | :e | :warn | :w | :info | :i | :debug | :d

|===

.... (clog (+ 10 20) :style :error "error style") (clog (+ 10 20) :style :warn "warn style") (clog (+ 10 20) :style :info "info style") (clog (+ 10 20) :style :debug "debug style") (clog (+ 10 20) "debug style is default") ....

Or in brief

.... (clog (+ 10 20) :s :e "error style") (clog (+ 10 20) :s :w "warn style") (clog (+ 10 20) :s :i "info style") (clog (+ 10 20) :s :d "debug style") (clog (+ 10 20) "debug style is default") ....

image::clog-style.png[title="Predefined style example", width=700]

User-defined style

You can redefine the predefined styles or define your own new style by using merge-styles like this.

[source] .... (d/merge-styles {:warn "background: #9400D3; color: white" :love "background: #FF1493; color: white"})

(clog (+ 10 20) :style :warn "warn style changed") (clog (+ 10 20) :style :love "love style")

;; You can style the form directly in string format in any way you want. (clog (+ 10 20) :style "color:orange; background:blue; font-size: 14pt") ....

image::clog-style-user.png[title="User-defined style example", width=650]

:once (or :o) option (CLJS only)

If you add :once (or :o in brief) option after the form, the same evaluated value will not be printed. This is a very useful feature, when you are debugging a game programming, where successive multiple frames usually have the same evaluated value.

[source] .... (def a (atom 10))

; This will be printed. (clog @a :once)

; This will not be printed, ; because the evaluated value is the same as before. (clog @a :once)

(reset! a 20)

; This will be printed, ; because the evaluated value is not the same as before. (clog @a :once)

; This will not be printed, ; because the evaluated value is the same as before. (clog @a :once) ....

image::clog-once.png[title=":once option example", width=700]

NOTE: (:once mode) string is appended after the form header to remind you of :once mode.

:js option (CLJS only)

If :js option is added after the form, the JavaScript object will be printed as well, so you can inspect the internal structures of ClojureScript data types or the JavaScript objects returned by JavaScript interops in ClojureScript.

.... (clog {:a 10 :b 20} :js) ....

image::clog-js.png[title=":js option example", width=800]

break examples (CLJS only)

break options

You can use break to set the breakpoint in the source code like this. You can add string option for message, or :if option for conditional break.

[source] .... (break) (break "hello world") (break :if (> 10 20) "this will not be printed") (break :if (< 10 20) "10 is less than 20") ....

You can see the message in DevTools' console window.

image:break-1.png[title="break examples", width=650]

Callstack, locals, etc

After setting the breakpoint, you can inspect the callstack, locals, etc. in the browser's DevTools window.

[source] .... (defn my-fun2 [a {:keys [b c d] :or {d 10 b 20 c 30}} [e f g & h]] (break "in my-fun2") (clog [a b c d e f g h]))

(my-fun2 (take 5 (range)) {:c 50 :d 100} ["a" "b" "c" "d" "e"]) ....

You can see the message in DevTools' console window.

image:break-2.png[width=750]

:if option example

When using break, you can use :if like this.

[source] .... (defn my-fun3 [] (let [a 10 b 20] (dotimes [i 1000] (break :if (= i 999) "in my-fun3"))))

(my-fun3) ....

image:break-4.png[]

[[tagged-literals]]

Tagged literals: #d/dbg, #d/dbgn, #d/dbgt,#d/clog, #d/clogn, #d/clogt

If you don't use the above options at all, you can use the tagged literals: #d/dbg, #d/dbgn, #d/dbgt,#d/clog, #d/clogn, #d/clogt. They behave exactly in the same way as their counterparts dbg, dbgn, clog, clogn. So in the no options case, you don't have to wrap the form by the parentheses any more, if you want.

[source] .Example 1 ....

d/dbg (+ 1 2 #d/dbg (* 3 4))

....

[source] .REPL output .... {:ns examples.lab, :line 5} dbg: (+ 1 2 (* 3 4)) =>

|{:ns examples.lab, :line 5} |dbg: (* 3 4) => || 12 | 15 ....


[source] .Example 2 ....

d/dbgn (+ ( 2 5) #d/dbg (+ 10 ( 3 4)))

....

[source] .REPL output .... {:ns examples.lab, :line 7} dbgn: (+ ( 2 5) (+ 10 ( 3 4))) => | (* 2 5) => | 10

|{:ns examples.lab, :line 7} |dbg: (+ 10 ( 3 4)) => || 22 | (+ ( 2 5) (+ 10 (* 3 4))) => | 32 ....


[source] .Example 3 ....

d/dbg (+ ( 2 5) #d/dbgn (+ 10 ( 3 4)))

....

[source] .REPL output .... {:ns examples.lab, :line 9} dbg: (+ ( 2 5) (+ 10 ( 3 4))) =>

|{:ns examples.lab, :line 9} |dbgn: (+ 10 ( 3 4)) => || ( 3 4) => || 12 || (+ 10 (* 3 4)) => || 22 | 32 ....

[TIP]

You can comment out the tagged literals temporarily, by appending _ after # like this.

[source] ....

d/dbg (+ 1 2 #_d/dbg (* 3 4))

....

[source] .REPL output .... {:ns examples.lab, :line 5} dbg: (+ 1 2 (* 3 4)) => | 15 ....

[#dbg-last]

dbg-last: Debugging inside the thread-last macro pass:q[->>]

IMPORTANT: The dbg-last/clog-last macros must be used inside the thread-last macro pass:q[->>]

NOTE: The options of dbg-last/clog-last macros are the same as those of dbg/clog.

If you want to use dbg macro with its options inside the thread-last macro pass:q[->>] like this, you will have an exception.

[source] .... (->> (range 10) (filter odd?) (dbg 5 "after filter") (map inc)) ; >> 1. Unhandled java.lang.IllegalArgumentException ; Don't know how to create ISeq from: java.lang.Long ....

The dbg-last macro is to the rescue of this case.

[source] .... (->> (range 20) (filter odd?) (dbg-last 5 "after filter") (map inc)) ; => (2 4 6 8 10 12 14 16 18 20) ....

[listing] .REPL output

{:ns examples.demo} dbg: (filter odd? (range 20)) => | (1 3 5 7 9)

There is no problem in case of the dbg macro with its options inside the thread-first macro pass:q[->].

[source] .... (-> (range 10) (conj 100) (dbg 5 "after conj") vec) ; => [100 0 1 2 3 4 5 6 7 8 9] ....

[listing]

{:ns examples.demo, :line 374} dbg: (conj (range 10) 100) => | (100 0 1 2 3)

[[dbg-prn]]

dbg-prn: Debugging the macros for ClojureScript at the macro-expansion time.

CAUTION: The function dbg-prn doesn't follow the usage employed in dbg/clog. It is just another name of println which can be used at the macro-expansion time.

NOTE: dbg-prn can be used inside the macros for Clojure.

See the detailed explaination link:doc/macro-debugging-in-clojurescript.adoc[here].

[[tap-output]]

Support for tap> added

Only dbg, dbgn and dbgt will call the functions registered by add-tag, using tap> function internally.

[cols="^2m,^1m,^1m,^1m,^1m,^1m,^1m, options="header"] |=== | | dbg | dbgn | clog | clogn | dbgt | clogt

| set-tap-output! | O | O | X | X | O | X |===

The following is an example of using tap> support in Debux.

[source] .events/tap-output.clj .... (ns examples.tap-output (:require [debux.tap-output :as d] [java-time.api :as jt]) (:gen-class))

(defn log [x] (spit "event.log" (str x \newline) :append true))

(defn my-date-time [] (->> (jt/local-date-time) (jt/format :iso-date-time) ))

(defn -main [] (println "\nRunning debux examples...\n")

;; add log function to tap (add-tap log)

;; For example, if you want to log the results of dbg/dbgn/dbgt ;; Firstly, run set-tap-output! function like this. (d/set-tap-output! true)

;; Optionally run set-date-time-fn! like this. ;; This will add :time info to the src-info line additionally. (d/set-date-time-fn! my-date-time)

(d/dbg (+ 10 20)) (d/dbgn (+ 10 (* 2 3))) (transduce (dbgt (comp (map inc) (filter odd?))) conj (range 5))) ....

event.log file will have the follwing logs.

[listing] .examples/event.log

{:ns examples.tap-output, :line 30, :time "2023-10-18T20:40:56.183613"} dbg: (+ 10 20) => | 30

{:ns examples.tap-output, :line 31, :time "2023-10-18T20:40:56.191472"} dbgn: (+ 10 ( 2 3)) => | ( 2 3) => | 6 | (+ 10 (* 2 3)) => | 16

{:ns examples.tap-output, :line 32, :time "2023-10-18T20:40:56.192775"} dbgt: (comp (map inc) (filter odd?)) |> 0 ||> 1 ||< [1] |< [1]

|> 1 ||> 2 ||< [1] |< [1]

|> 2 ||> 3 ||< [1 3] |< [1 3]

|> 3 ||> 4 ||< [1 3] |< [1 3]

|> 4 ||> 5 ||< [1 3 5] |< [1 3 5]

[[cljs-devtools]]

Support for cljs-devtools added

[[set-cljs-devtools]]

** firstly, call the set-cljs-devtools! function in your source code explicitly like this. + [source] .... (debux.cs.core/set-cljs-devtools! true) ;; the default value is false ....

** secondly, install cljs-devtools via :preloads cljs compiler option like this, following link:https://github.com/binaryage/cljs-devtools/blob/master/docs/installation.md[cljs-devtools installition guide]. + [listing] .project.clj

(defproject your-project "0.1.0" :dependencies [[binaryage/devtools "1.0.2"] ,,,,,,] ,,,,,, :cljsbuild {:builds [{:compiler {:preloads [devtools.preload] ,,,,,,}}]})

+ Or install it manually like this. + [listing]

(ns your-project.devtools (:require [devtools.core :as devtools]))

(devtools/install!)

[[babashka]]

Support for bb (Babashka for Clojure) added.

The running exampls is under the examples subproject folder of this project.

[source] .examples/bb.edn .... {:paths ["src/clj"] :deps {philoskim/debux {:mvn/version "0.9.1"} }} ....

[listing]

run in the examples subproject root folder

examples> bb -m examples.bb-run

[[electric]]

Support for Electric added

;;; The client side macros for Electric debux.cs.electric namespace: clog, clogn, clogt, clog-last, clog, clogn, clogt, clog-last dbg, dbgn, dbgt, dbg-last, dbg, dbgn, dbgt, dbg-last

?(:clj (use 'debux.electric))

?(:clj (defonce !x (atom true))) ; server state

(e/def x (e/server (e/watch !x))) ; reactive signal derived from atom

(e/defn Toggle [] (e/client (dom/h1 (dom/text "Toggle Client/Server"))

(dom/div
  (dom/text "number type here is: "
    (case x
      true (e/client (clogn (pr-str (type 1))))     ;; <-- Here
      false (e/server (dbgn (pr-str (type 1))) )))) ;; <-- Here

(dom/div (dom/text "current site: "
           (case x
             true "ClojureScript (client)"
             false "Clojure (server)")))

(ui/button (e/fn []
             (e/server
               (swap! !x not)))
  (dom/text "toggle client/server"))))

....

[[source-info-mode]]

Turning off the source info line printing

If you want to turn off the source info line printing in the debux macros, use (set-source-info-mode! false). The :ns and :line source info line will not be printed.

[source] .... (set-source-info-mode! false)

(dbg (+ 2 3)) (dbgn (* 10 (+ 2 3)))

(set-source-info-mode! true)

(dbg (+ 20 30)) (dbgn (* 10 (+ 2 3))) ....

[listing] .REPL output

dbg: (+ 2 3) => | 5

dbgn: ( 10 (+ 2 3)) => | (+ 2 3) => | 5 | ( 10 (+ 2 3)) => | 50

{:ns examples.lab, :line 11} dbg: (+ 20 30) => | 50

{:ns examples.lab, :line 12} dbgn: ( 10 (+ 2 3)) => | (+ 2 3) => | 5 | ( 10 (+ 2 3)) => | 50

[[set-line-bullet]]

Setting the line bullet

You can change the default line bullet "|" by using set-line-bullet! as follows.

[source] .... (set-line-bullet! ";") (dbg (+ 20 30)) (dbgn (* 10 (+ 2 3)))

(set-line-bullet! " ") (dbg (+ 20 30)) (dbgn (* 10 (+ 2 3))) ....

[listing] .REPL output

{:ns examples.lab, :line 11} dbg: (+ 20 30) => ; 50

{:ns examples.lab, :line 12} dbgn: ( 10 (+ 2 3)) => ; (+ 2 3) => ; 5 ; ( 10 (+ 2 3)) => ; 50

{:ns examples.lab, :line 17} dbg: (+ 20 30) => 50

{:ns examples.lab, :line 18} dbgn: ( 10 (+ 2 3)) => (+ 2 3) => 5 ( 10 (+ 2 3)) => 50

[[temporal-turn-off]]

Turning off the debux macros temporarily

You can temporarily turn off the debux macros by appending pass:q[_] after the existing debux macro names or turn off the tagged literals by appending pass:q[_] after #.

[cols="m,m,m,m", options="header", width=75%] |===

^| Macros ^| turning-off ^| Tagged literals ^| turning-off

| dbg | dbg_ | #d/dbg | #d/dbg | dbgn | dbgn | #d/dbgn | #d/dbgn | dbgt | dbgt | #d/dbgt | #d/dbgt | dbg-prn | dbg-prn | | | dbg-last | dbg-last_ | |

| clog | clog_ | #d/clog | #d/clog | clogn | clogn | #d/clogn | #d/clogn | clogt | clogt | #d/clogt | #d/clogt | clog-last | clog-last | |

| break | break_ | |

|===

[[debux-config]]

How to configure the namespaces to debug

;; The folowings take no effect at all. (set-ns-whitelist! ["my-app." ]) (set-ns-blacklist! ["my-app.foo" "my-app.bar."]) ....

The following (in https://github.com/philoskim/debux/tree/master/examples[examples] folder) is an example.

in Clojure

[listing] .examples/project.clj

(defproject examples ,,,,,, :main examples.core ,,,,,,)

[source] .examples/src/clj/examples/core.clj .... (ns examples.core (:require [debux.core :as d]) (:gen-class))

(defn -main [] (println "\nRunning debux examples...\n")

;(d/set-debug-mode! false) (d/set-ns-whitelist! ["examples.dbg*"]) (d/set-ns-blacklist! ["examples.dbgn"])

;; You should require dynamically the namespaces that you want to load. (require 'examples.dbg) (require 'examples.options) (require 'examples.dbgn)) ....

in ClojureScript

[listing] .examples/project.clj

(defproject examples ,,,,,, :cljsbuild {:builds [{,,,,,, :compiler {,,,,,, :preloads [examples.preload] ,,,,,,}}]})

[source] .examples/src/cljs/examples/preload.cljs .... (ns examples.preload (:require [debux.cs.core :as d]))

;(d/set-debug-mode! false) (d/set-ns-whitelist! ["examples.clog*"]) (d/set-ns-blacklist! ["examples.clogn"]) ....

Using debux macros on Node.js

You had better use dbg/dbgn instead of clog/clogn on Node.js JavaScript console, because Node.js doesn't support colors in its console.log function. The following shows the example.

[source] .example.node .... (ns examples.node (:require [cljs.nodejs :as nodejs] [debux.cs.core :refer-macros [clog clogn dbg dbgn]] ))

(defn -main [& args] (dbgn (+ 2 ( 3 4))) (clogn (+ 2 ( 3 4))))

(set! main-cli-fn -main) ....

[listing] .JavaScript console output on Node.js

{:ns examples.node :line 6} dbgn: (+ 2 ( 3 4)) => | ( 3 4) => | 12 | (+ 2 (* 3 4)) => | 14

{:ns examples.node :line 7} %cclogn: %c (+ 2 ( 3 4)) %c => color: #8b008b background: #ffc125; color: black color: black => | %c ( 3 4) %c => background: #ffc125; color: black color: black => | 12 | %c (+ 2 (* 3 4)) %c => background: #ffc125; color: black color: black => | 14

Of course, you should use the clog/clogn instead of dbg/dbgn in link:https://electronjs.org/[Electron] apps on Node.js, because Electron supports colors in its console.log function.

[#browser-repl]

Usage in ClojureScript on Browser REPL

You can use both dbg/dbgn and clog/clogn on the browser REPL. The following is an example about running the link:https://github.com/bhauman/lein-figwheel[figwheel].

[source] .project.clj .... (defproject examples "0.1.0-SNAPSHOT" :dependencies [[org.clojure/clojure "1.10.0"] [org.clojure/clojurescript "1.10.238"] [philoskim/debux "0.9.1"]] :plugins [[lein-cljsbuild "1.1.6"] [lein-figwheel "0.5.10"]] :source-paths ["src/clj"] :clean-targets ^{:protect false} ["resources/public/js/app.js" "resources/public/js/app.js.map"] :cljsbuild {:builds [{:id "dev" :source-paths ["src/cljs"] :figwheel true :compiler {:main examples.core :asset-path "js/out" :output-to "resources/public/js/app.js" :output-dir "resources/public/js/out" :source-map true :optimizations :none} }]}) ....

And then run figwheel like this on terminal window.

[listing]

$ lein figwheel Figwheel: Cutting some fruit, just a sec ... Figwheel: Validating the configuration found in project.clj Figwheel: Configuration Valid :) Figwheel: Starting server at http://0.0.0.0:3449 Figwheel: Watching build - dev Compiling "resources/public/js/app.js" from ["src/cljs"]... Successfully compiled "resources/public/js/app.js" in 2.14 seconds. Launching ClojureScript REPL for build: dev Figwheel Controls: (stop-autobuild) ;; stops Figwheel autobuilder (start-autobuild [id ...]) ;; starts autobuilder focused on optional ids (switch-to-build id ...) ;; switches autobuilder to different build (reset-autobuild) ;; stops, cleans, and starts autobuilder (reload-config) ;; reloads build config and resets autobuild (build-once [id ...]) ;; builds source one time (clean-builds [id ..]) ;; deletes compiled cljs target files (print-config [id ...]) ;; prints out build configurations (fig-status) ;; displays current state of system (figwheel.client/set-autoload false) ;; will turn autoloading off (figwheel.client/set-repl-pprint false) ;; will turn pretty printing off Switch REPL build focus: :cljs/quit ;; allows you to switch REPL to another build Docs: (doc function-name-here) Exit: Control+C or :cljs/quit Results: Stored in vars 1, 2, 3, e holds last exception object Prompt will show when Figwheel connects to your application

After that, connect to http://localhost:3449 on your browser.

[listing]

To quit, type: :cljs/quit cljs.user=> (require '[debux.cs.core :refer-macros [clog clogn dbg dbgn break]]) nil

cljs.user=> (dbg (+ 1 2))

{:ns cljs.user :line 4} dbg: (+ 1 2) => | 3 3

cljs.user=>

Now you can do anything in this browser REPL as in the Clojure REPL. When you evaluate dbg/dbgn in your ClojureScript source code, the result will go to both the REPL window and the browser's console window. When you evaluate clog/clogn in your ClojureScript source code, the result will go only to your browser's console window.

debux.el for Emacs CIDER user

Inserting or deleting dbg/dbgn/clog/clogn manually is very painful. As Emacs user I wrote debux.el for Emacs CIDER for my convenience. I think it's not perfect but better than nothing. If you find it useful, append the following debux.el (which is in project root folder) to the ~/.emacs.d/init.el.

debux.el

Refer to the source code of debux.el https://github.com/philoskim/debux/blob/master/debux.el[here].

How to use

Inserting pass:q[dbg/clog] or pass:q[dbgn/clogn]

When you double-click the left mouse button on one of the open parentheses and the following string is not dbg or clog, it will be inserted.

[source] .... ;; before ;; v (let [a 1 b 2] (+ a b))

;; after (dbg (let [a 1 b 2] (+ a b))) ....

When you double-click on a symbol, dbg or clog will be inserted as well.

[source] .... ;; before ; v (+ a b)

;; after (+ (dbg a) b) ....

When you double-click on one of the open parentheses while pressing <Ctrl> key and the following string is not dbgn or clogn, it will be inserted.

[source] .... ;; before ;; v (defn foo [a b c] (* a b c))

;; after (dbgn (defn foo [a b c] (* a b c))) ....

Deleting pass:q[dbg/clog/dbgn/clogn]

When you double-click on one of the open parentheses and the following string is dbg, clog, dbgn or clogn, it will be deleted.

[source] .... ;; before ;; v (dbg (let [a 1 b 2] (+ a b)))

;; after (let [a 1 b 2] (+ a b))

;; before ;; v (dbgn (defn foo [a b c] (* a b c)))

;; after (defn foo [a b c] (* a b c)) ....

License

Copyright © 2015--2024 Young Tae Kim

Distributed under the Eclipse Public License either version 1.0 or any later version.