This system contains 2 steps:
git clone https://github.com/vncorenlp/VnCoreNLP.git vncorenlp_data # for vncorebnlp tokenize lib
conda create -n legal_retrieval_env python=3.8
conda activate legal_retrieval_env
pip install -r requirements.txt
Generate data from folder data/zac2021-ltr-data/
containing public_test_question.json
and train_question_answer.json
python3 src/data_generator.py --path_folder_base data/zac2021-ltr-data/ --test_file public_test_question.json --topk 150 --tok --path_output_dir data/zalo-tfidfbm25150-full
Note:
--test_file public_test_question.json
is optional, if this parameter is not used, test set will be random 33% in filetrain_question_answer.json
--path_output_dir
is the folder save 3 output file (train.csv
,dev.csv
,test.csv
) and tfidf classifier (tfidf_classifier.pkl
) for top k best relevant documents.
Train model
bash scripts/run_finetune_bert.sh "magic" vinai/phobert-base ../ data/zalo-tfidfbm25150-full Tfbm150E5-full 5
Predict
python3 src/infer.py
Note: This script will load model and run prediction, pls check the variable
model_configs
in filesrc/infer.py
to modify.
Try our example on google colab
MIT-licensed.
Please cite as:
@article{DBLP:journals/corr/abs-2106-13405,
author = {Ha{-}Thanh Nguyen and
Phuong Minh Nguyen and
Thi{-}Hai{-}Yen Vuong and
Quan Minh Bui and
Chau Minh Nguyen and
Tran Binh Dang and
Vu Tran and
Minh Le Nguyen and
Ken Satoh},
title = {{JNLP} Team: Deep Learning Approaches for Legal Processing Tasks in
{COLIEE} 2021},
journal = {CoRR},
volume = {abs/2106.13405},
year = {2021},
url = {https://arxiv.org/abs/2106.13405},
eprinttype = {arXiv},
eprint = {2106.13405},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-13405.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/abs-2011-08071,
author = {Ha{-}Thanh Nguyen and
Hai{-}Yen Thi Vuong and
Phuong Minh Nguyen and
Tran Binh Dang and
Quan Minh Bui and
Vu Trong Sinh and
Chau Minh Nguyen and
Vu D. Tran and
Ken Satoh and
Minh Le Nguyen},
title = {{JNLP} Team: Deep Learning for Legal Processing in {COLIEE} 2020},
journal = {CoRR},
volume = {abs/2011.08071},
year = {2020},
url = {https://arxiv.org/abs/2011.08071},
eprinttype = {arXiv},
eprint = {2011.08071},
biburl = {https://dblp.org/rec/journals/corr/abs-2011-08071.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}