The Pinecone Java SDK lets JVM applications interact with Pinecone services.
pinecone-client requires at least Java 1.8.
pinecone-client can be installed from Maven Central for use as a maven dependency in the following ways:
Maven:
<dependency>
<groupId>io.pinecone</groupId>
<artifactId>pinecone-client</artifactId>
<version>3.0.0</version>
</dependency>
Gradle:
implementation "io.pinecone:pinecone-client:3.0.0"
Alternatively, you can use our standalone uberjar pinecone-client-3.0.0-all.jar, which bundles the Pinecone SDK and all dependencies together. You can include this in your classpath like you do with any 3rd party JAR without having to obtain the pinecone-client dependencies separately.
Before you can use the Pinecone Java SDK, you must sign up for a Pinecone account and find your API key in the Pinecone console dashboard at https://app.pinecone.io.
The Pinecone
class is your main entry point into the Pinecone Java SDK. You can instantiate the client with
your apiKey
, either by passing it as an argument in your code or by setting it as an environment variable called
PINECONE_API_KEY
.
This internally instantiates a single shared OkHttpClient instance, which is used for both control plane and inference
operations. Note that the OkHttpClient performs best when you create a single OkHttpClient
instance and reuse it
for all of your HTTP calls. This is because each client holds its own connection pool and thread pools. Reusing
connections and threads reduces latency and saves memory. Conversely, creating a client for each request wastes
resources on idle pools. More details on the OkHttpClient can be found here.
import io.pinecone.clients.Pinecone;
public class InitializeClientExample {
public static void main(String[] args) {
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
}
}
If you need to provide a custom OkHttpClient
, you can do so by using the withOkHttpClient()
method of the
Pinecone.Builder
class to pass in your OkHttpClient
object.
import io.pinecone.clients.Pinecone;
import okhttp3.OkHttpClient;
public class InitializeClientExample {
public static void main(String[] args) {
OkHttpClient.Builder builder = new OkHttpClient.Builder()
.connectTimeout(10, java.util.concurrent.TimeUnit.SECONDS)
.readTimeout(30, java.util.concurrent.TimeUnit.SECONDS)
.writeTimeout(30, java.util.concurrent.TimeUnit.SECONDS);
OkHttpClient httpClient = builder.build();
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").withOkHttpClient(httpClient).build();
}
}
If your network setup requires you to interact with Pinecone via a proxy, you will need to pass additional
configuration using the parameters host
and port
of the ProxyConfig
class.
import io.pinecone.clients.Index;
import io.pinecone.clients.Pinecone;
import io.pinecone.proto.UpsertResponse;
import io.pinecone.unsigned_indices_model.QueryResponseWithUnsignedIndices;
import org.openapitools.db_control.client.model.IndexModel;
import java.util.Arrays;
public class ProxyExample {
public static void main(String[] args) {
String apiKey = "PINECONE_API_KEY";
String proxyHost = "PROXY_HOST";
int proxyPort = 8080; // Port can be configured based on your setup
Pinecone pinecone = new Pinecone.Builder(apiKey)
.withProxy(proxyHost, proxyPort)
.build();
// Control plane operation routed through the proxy server
IndexModel indexModel = pinecone.describeIndex("PINECONE_INDEX");
// Data plane operations routed through the proxy server
Index index = pinecone.getIndexConnection("PINECONE_INDEX_NAME");
// 1. Upsert data
UpsertResponse upsertResponse = index.upsert("v1", Arrays.asList(1F, 2F, 3F, 4F));
// 2. Query vector
QueryResponseWithUnsignedIndices queryResponse = index.queryByVectorId(1, "v1", true, true);
}
}
If you would like to disable TLS verification for data plane operations, you can disable it by setting enableTLS
parameter of PineconeConfig
class to false. We do not recommend going to production with TLS verification disabled.
import io.pinecone.clients.Index;
import io.pinecone.configs.PineconeConfig;
import io.pinecone.configs.PineconeConnection;
import io.pinecone.unsigned_indices_model.QueryResponseWithUnsignedIndices;
import io.pinecone.proto.UpsertResponse;
import java.util.Arrays;
public class DisableTLSExample {
public static void main(String[] args) {
PineconeConfig config = new PineconeConfig("api");
config.setHost("localhost:5081");
config.setTLSEnabled(false);
PineconeConnection connection = new PineconeConnection(config);
Index index = new Index(connection, "example-index");
// Data plane operations
// 1. Upsert data
UpsertResponse upsertResponse = index.upsert("v1", Arrays.asList(1f, 2f, 3f));
// 2. Query data
QueryResponseWithUnsignedIndices queryResponse = index.queryByVectorId(1, "v1", true, true);
}
}
Operations related to the building and managing of Pinecone indexes are called control plane operations.
You can use the Java SDK to create two types of indexes: serverless indexes (recommended for most use cases) and pod-based indexes (recommended for high-throughput use cases).
The following is an example of creating a serverless index in the us-west-2
region of AWS. For more information on
serverless and regional availability, see Understanding indexes.
import io.pinecone.clients.Pinecone;
import org.openapitools.db_control.client.model.IndexModel;
import org.openapitools.db_control.client.model.DeletionProtection;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
String indexName = "example-index";
String similarityMetric = "cosine";
int dimension = 1538;
String cloud = "aws";
String region = "us-west-2";
IndexModel indexModel = pinecone.createServerlessIndex(indexName, similarityMetric, dimension, cloud, region, DeletionProtection.ENABLED);
The following is a minimal example of creating a pod-based index. For all the possible configuration options, see
main/java/io/pinecone/clients/Pinecone.java
.
import io.pinecone.clients.Pinecone;
import org.openapitools.db_control.client.model.IndexModel;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
String indexName = "example-index";
String similarityMetric = "cosine"; // Optional; defaults to cosine similarity
int dimension = 1538;
String environment = "us-east-1-aws";
String podType = "p1.x1";
IndexModel indexModel = pinecone.createPodsIndex(indexName, dimension, environment, podType, similarityMetric);
The following is an example of creating a pod-based index with deletion protection enabled. For all the possible
configuration options, see main/java/io/pinecone/clients/Pinecone.java
.
import io.pinecone.clients.Pinecone;
import org.openapitools.client.model.IndexModel;
import org.openapitools.control.client.model.DeletionProtection;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
String indexName = "example-index";
int dimension = 1538;
String environment = "us-east-1-aws";
String podType = "p1.x1";
IndexModel indexModel = pinecone.createPodsIndex(indexName, dimension, environment, podType, DeletionProtection.ENABLED);
The following example returns all indexes (and their corresponding metadata) in your project.
import io.pinecone.clients.Pinecone;
import org.openapitools.db_control.client.model.IndexList;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
IndexList indexesInYourProject = pinecone.listIndexes();
The following example returns metadata about an index.
import io.pinecone.clients.Pinecone;
import org.openapitools.db_control.client.model.IndexModel;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
IndexModel indexMetadata = pinecone.describeIndex("example-index");
The following example deletes an index.
import io.pinecone.clients.Pinecone;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
pinecone.deleteIndex("example-index");
The following example changes the number of replicas for an index.
Note: scaling replicas is only applicable to pod-based indexes.
import io.pinecone.clients.Pinecone;
import org.openapitools.db_control.client.model.DeletionProtection;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
String indexName = "example-index";
String podType = "p1.x1";
int newNumberOfReplicas = 7;
DeletionProtection deletionProtection = DeletionProtection.DISABLED;
pinecone.configurePodsIndex(indexName, podType, newNumberOfReplicas, deletionProtection);
The following example enables deletion protection for a pod-based index.
import io.pinecone.clients.Pinecone;
import org.openapitools.db_control.client.model.DeletionProtection;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
String indexName = "example-index";
DeletionProtection deletionProtection = DeletionProtection.ENABLED;
pinecone.configurePodsIndex(indexName, deletionProtection);
The following example enables deletion protection for a serverless index.
import io.pinecone.clients.Pinecone;
import org.openapitools.db_control.client.model.DeletionProtection;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
String indexName = "example-index";
pinecone.configureServerlessIndex(indexName, DeletionProtection.ENABLED);
The following example returns statistics about an index.
import io.pinecone.clients.Index;
import io.pinecone.clients.Pinecone;
import io.pinecone.proto.DescribeIndexStatsResponse;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
Index index = pinecone.getIndexConnection("example-index");
DescribeIndexStatsResponse indexStatsResponse = index.describeIndexStats();
Operations related to the indexing, deleting, and querying of vectors are called data plane operations.
The following example upserts vectors to example-index
.
import com.google.protobuf.Struct;
import io.pinecone.clients.Index;
import io.pinecone.clients.Pinecone;
import io.pinecone.unsigned_indices_model.VectorWithUnsignedIndices;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import static io.pinecone.commons.IndexInterface.buildUpsertVectorWithUnsignedIndices;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
Index index = pinecone.getIndexConnection("example-index");
// Vector ids to be upserted
List<String> upsertIds = Arrays.asList("v1", "v2", "v3");
// List of values to be upserted
List<List<Float>> values = new ArrayList<>();
values.add(Arrays.asList(1.0f, 2.0f, 3.0f));
values.add(Arrays.asList(4.0f, 5.0f, 6.0f));
values.add(Arrays.asList(7.0f, 8.0f, 9.0f));
// List of sparse indices to be upserted
List<List<Long>> sparseIndices = new ArrayList<>();
sparseIndices.add(Arrays.asList(1L, 2L, 3L));
sparseIndices.add(Arrays.asList(4L, 5L, 6L));
sparseIndices.add(Arrays.asList(7L, 8L, 9L));
// List of sparse values to be upserted
List<List<Float>> sparseValues = new ArrayList<>();
sparseValues.add(Arrays.asList(1000f, 2000f, 3000f));
sparseValues.add(Arrays.asList(4000f, 5000f, 6000f));
sparseValues.add(Arrays.asList(7000f, 8000f, 9000f));
List<VectorWithUnsignedIndices> vectors = new ArrayList<>(3);
// metadata to be upserted
Struct metadataStruct1 = Struct.newBuilder()
.putFields("genre", Value.newBuilder().setStringValue("action").build())
.putFields("year", Value.newBuilder().setNumberValue(2019).build())
.build();
Struct metadataStruct2 = Struct.newBuilder()
.putFields("genre", Value.newBuilder().setStringValue("thriller").build())
.putFields("year", Value.newBuilder().setNumberValue(2020).build())
.build();
Struct metadataStruct3 = Struct.newBuilder()
.putFields("genre", Value.newBuilder().setStringValue("comedy").build())
.putFields("year", Value.newBuilder().setNumberValue(2021).build())
.build();
List<Struct> metadataStructList = Arrays.asList(metadataStruct1, metadataStruct2, metadataStruct3);
// Upsert data
for (int i=0; i<metadataStructList.size(); i++) {
vectors.add(buildUpsertVectorWithUnsignedIndices(upsertIds.get(i), values.get(i), sparseIndices.get(i), sparseValues.get(i), metadataStructList.get(i)));
}
UpsertResponse upsertResponse = index.upsert(vectors, "example-namespace");
The following example queries the index example-index
with metadata
filtering.
import io.pinecone.clients.Index;
import io.pinecone.clients.Pinecone;
import io.pinecone.unsigned_indices_model.QueryResponseWithUnsignedIndices;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
Index index = pinecone.getIndexConnection("example-index");
QueryResponseWithUnsignedIndices queryRespone = index.queryByVectorId(3, "v1", "example-namespace");
The following example deletes vectors by ID.
import io.pinecone.clients.Index;
import io.pinecone.clients.Pinecone;
import java.util.Arrays;
import java.util.List;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
Index index = pinecone.getIndexConnection("example-index");
List<String> ids = Arrays.asList("v1", "v2", "v3");
DeleteResponse deleteResponse = index.deleteByIds(ids, "example-namespace");
The following example fetches vectors by ID.
import io.pinecone.clients.Index;
import io.pinecone.clients.Pinecone;
import io.pinecone.proto.FetchResponse;
import java.util.Arrays;
import java.util.List;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
Index index = pinecone.getIndexConnection("example-index");
List<String> ids = Arrays.asList("v1", "v2", "v3");
FetchResponse fetchResponse = index.fetch(ids, "example-namespace");
The following example lists up to 100 vector IDs from a Pinecone index.
This method accepts optional parameters for namespace
, prefix
, limit
, and paginationToken
.
The following demonstrates how to use the list
endpoint to get vector IDs from a specific namespace
, filtered by a
given prefix
.
import io.pinecone.clients.Index;
import io.pinecone.clients.Pinecone;
import io.pinecone.proto.ListResponse;
Pinecone pinecone = new Pinecone.Builder(System.getenv("PINECONE_API_KEY")).build();
String indexName = "example-index";
Index index = pinecone.getIndexConnection(indexName);
ListResponse listResponse = index.list("example-namespace", "prefix-");
The following example updates vectors by ID.
import io.pinecone.clients.Index;
import io.pinecone.clients.Pinecone;
import io.pinecone.proto.UpdateResponse;
import java.util.Arrays;
import java.util.List;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
Index index = pinecone.getIndexConnection("example-index");
List<Float> values = Arrays.asList(1F, 2F, 3F);
UpdateResponse updateResponse = index.update("v1", values, "example-namespace");
Collections fall under control plane operations.
The following example creates the collection example-collection
from
example-index
.
import io.pinecone.clients.Pinecone;
import org.openapitools.db_control.client.model.CollectionModel;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
String collectionName = "example-collection";
String sourceIndex = "an-index-you-want-a-static-copy-of";
CollectionModel collectionModel = pinecone.createCollection(collectionName, sourceIndex);
The following example returns a list of the collections in the current project.
import io.pinecone.clients.Pinecone;
import org.openapitools.db_control.client.model.CollectionModel;
import java.util.List;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
List<CollectionModel> collectionModels = pinecone.listCollections().getCollections();
The following example returns a description of the collection
import io.pinecone.clients.Pinecone;
import org.openapitools.db_control.client.model.CollectionModel;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
CollectionModel model = pinecone.describeCollection("example-collection");
The following example deletes the collection example-collection
.
import io.pinecone.clients.Pinecone;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
pinecone.deleteCollection("example-collection");
The Pinecone SDK now supports creating embeddings via the Inference API.
import io.pinecone.clients.Inference;
import io.pinecone.clients.Pinecone;
import org.openapitools.inference.client.ApiException;
import org.openapitools.inference.client.model.Embedding;
import org.openapitools.inference.client.model.EmbeddingsList;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
...
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
Inference inference = pinecone.getInferenceClient();
// Prepare input sentences to be embedded
List<String> inputs = new ArrayList<>();
inputs.add("The quick brown fox jumps over the lazy dog.");
inputs.add("Lorem ipsum");
// Specify the embedding model and parameters
String embeddingModel = "multilingual-e5-large";
Map<String, Object> parameters = new HashMap<>();
parameters.put("input_type", "query");
parameters.put("truncate", "END");
// Generate embeddings for the input data
EmbeddingsList embeddings = inference.embed(embeddingModel, parameters, inputs);
// Get embedded data
List<Embedding> embeddedData = embeddings.getData();
The following example shows how to rerank items according to their relevance to a query.
import io.pinecone.clients.Inference;
import io.pinecone.clients.Pinecone;
import org.openapitools.inference.client.ApiException;
import org.openapitools.inference.client.model.RerankResult;
import java.util.*;
...
Pinecone pinecone = new Pinecone.Builder(System.getenv("PINECONE_API_KEY")).build();
Inference inference = pinecone.getInferenceClient();
// The model to use for reranking
String model = "bge-reranker-v2-m3";
// The query to rerank documents against
String query = "The tech company Apple is known for its innovative products like the iPhone.";
// Add the documents to rerank
List<Map<String, String>> documents = new ArrayList<>();
Map<String, String> doc1 = new HashMap<>();
doc1.put("id", "vec1");
doc1.put("my_field", "Apple is a popular fruit known for its sweetness and crisp texture.");
documents.add(doc1);
Map<String, String> doc2 = new HashMap<>();
doc2.put("id", "vec2");
doc2.put("my_field", "Many people enjoy eating apples as a healthy snack.");
documents.add(doc2);
Map<String, String> doc3 = new HashMap<>();
doc3.put("id", "vec3");
doc3.put("my_field", "Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.");
documents.add(doc3);
Map<String, String> doc4 = new HashMap<>();
doc4.put("id", "vec4");
doc4.put("my_field", "An apple a day keeps the doctor away, as the saying goes.");
documents.add(doc4);
// The fields to rank the documents by. If not provided, the default is "text"
List<String> rankFields = Arrays.asList("my_field");
// The number of results to return sorted by relevance. Defaults to the number of inputs
int topN = 2;
// Whether to return the documents in the response
boolean returnDocuments = true;
// Additional model-specific parameters for the reranker
Map<String, String> parameters = new HashMap<>();
parameters.put("truncate", "END");
// Send ranking request
RerankResult result = inference.rerank(model, query, documents, rankFields, topN, returnDocuments, parameters);
// Get ranked data
System.out.println(result.getData());
The following example initiates an asynchronous import of vectors from object storage into the index.
import io.pinecone.clients.Pinecone;
import io.pinecone.clients.AsyncIndex;
import org.openapitools.db_data.client.ApiException;
import org.openapitools.db_data.client.model.ImportErrorMode;
import org.openapitools.db_data.client.model.StartImportResponse;
...
// Initialize pinecone object
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
// Get async imports connection object
AsyncIndex asyncIndex = pinecone.getAsyncIndexConnection("PINECONE_INDEX_NAME");
// s3 uri
String uri = "s3://path/to/file.parquet";
// Start an import
StartImportResponse response = asyncIndex.startImport(uri, "123-456-789", ImportErrorMode.OnErrorEnum.CONTINUE);
The following example lists all recent and ongoing import operations for the specified index.
import io.pinecone.clients.Pinecone;
import io.pinecone.clients.AsyncIndex;
import org.openapitools.db_data.client.ApiException;
import org.openapitools.db_data.client.model.ListImportsResponse;
...
// Initialize pinecone object
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
// Get async imports connection object
AsyncIndex asyncIndex = pinecone.getAsyncIndexConnection("PINECONE_INDEX_NAME");
// List imports
ListImportsResponse response = asyncIndex.listImports(100, "some-pagination-token");
The following example retrieves detailed information about a specific import operation using its unique identifier.
import io.pinecone.clients.Pinecone;
import io.pinecone.clients.AsyncIndex;
import org.openapitools.db_data.client.ApiException;
import org.openapitools.db_data.client.model.ImportModel;
...
// Initialize pinecone object
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
// Get async imports connection object
AsyncIndex asyncIndex = pinecone.getAsyncIndexConnection("PINECONE_INDEX_NAME");
// Describe import
ImportModel importDetails = asyncIndex.describeImport("1");
The following example attempts to cancel an ongoing import operation using its unique identifier.
import io.pinecone.clients.Pinecone;
import io.pinecone.clients.AsyncIndex;
import org.openapitools.db_data.client.ApiException;
...
// Initialize pinecone object
Pinecone pinecone = new Pinecone.Builder("PINECONE_API_KEY").build();
// Get async imports connection object
AsyncIndex asyncIndex = pinecone.getAsyncIndexConnection("PINECONE_INDEX_NAME");
// Cancel import
asyncIndex.cancelImport("2");
io/pinecone/integration
folder.