praise2112 / abbreviation-extractor

A library for quickly and accurately extracting abbreviations from text.
MIT License
2 stars 0 forks source link

Abbreviation Extractor

Abbreviation Extractor is a high-performance Rust library with Python bindings for extracting abbreviation-definition pairs from text, particularly focused on biomedical text. It implements an improved version of the Schwartz-Hearst algorithm, offering enhanced accuracy and speed. It's based the original python implementation.

Speed Comparison With Other Abbreviation Extraction Libraries

Extraction Accuracy Comparison With Other Abbreviation Extraction Libraries

Features

Installation

Rust

Add this to your Cargo.toml:

abbreviation-extractor = "0.1.3"

Python

pip install abbreviation-extractor-rs

Basic Usage

Rust

use abbreviation_extractor::{extract_abbreviation_definition_pairs, AbbreviationOptions};

let text = "The World Health Organization (WHO) is a specialized agency.";
let options = AbbreviationOptions::default();
let result = extract_abbreviation_definition_pairs(text, options);

for pair in result {
    println!("Abbreviation: {}, Definition: {}", pair.abbreviation, pair.definition);
}

Python

from abbreviation_extractor import extract_abbreviation_definition_pairs

text = "The World Health Organization (WHO) is a specialized agency."
result = extract_abbreviation_definition_pairs(text)

for pair in result:
    print(f"Abbreviation: {pair.abbreviation}, Definition: {pair.definition}")

Customizing Extraction

Python

from abbreviation_extractor import extract_abbreviation_definition_pairs

text = "The World Health Organization (WHO) is a specialized agency. The World Heritage Organization (WHO) is different."

# Get only the most common definition for each abbreviation
result = extract_abbreviation_definition_pairs(text, most_common_definition=True)

# Get only the first definition for each abbreviation
result = extract_abbreviation_definition_pairs(text, first_definition=True)

# Disable tokenization (if the input is already tokenized)
result = extract_abbreviation_definition_pairs(text, tokenize=False)

# Combine options
result = extract_abbreviation_definition_pairs(text, most_common_definition=True, tokenize=True)

for pair in result:
    print(f"Abbreviation: {pair.abbreviation}, Definition: {pair.definition}")

Rust

use abbreviation_extractor::{extract_abbreviation_definition_pairs, AbbreviationOptions};

let text = "The World Health Organization (WHO) is a specialized agency. The World Heritage Organization (WHO) is different.";

// Get only the most common definition for each abbreviation
let options = AbbreviationOptions::new(true, false, true);
let result = extract_abbreviation_definition_pairs(text, options);

// Get only the first definition for each abbreviation
let options = AbbreviationOptions::new(false, true, true);
let result = extract_abbreviation_definition_pairs(text, options);

// Disable tokenization (if the input is already tokenized)
let options = AbbreviationOptions::new(false, false, false);
let result = extract_abbreviation_definition_pairs(text, options);

for pair in result {
    println!("Abbreviation: {}, Definition: {}", pair.abbreviation, pair.definition);
}

Parallel Processing

For processing multiple texts in parallel, you can use the extract_abbreviation_definition_pairs_parallel function:

Rust

use abbreviation_extractor::{extract_abbreviation_definition_pairs_parallel, AbbreviationOptions};

let texts = vec![
    "The World Health Organization (WHO) is a specialized agency.",
    "The United Nations (UN) works closely with WHO.",
    "The European Union (EU) is a political and economic union.",
];

let options = AbbreviationOptions::default();
let result = extract_abbreviation_definition_pairs_parallel(texts, options);

for extraction in result.extractions {
    println!("Abbreviation: {}, Definition: {}", extraction.abbreviation, extraction.definition);
}

Python

from abbreviation_extractor import extract_abbreviation_definition_pairs_parallel

texts = [
    "The World Health Organization (WHO) is a specialized agency.",
    "The United Nations (UN) works closely with WHO.",
    "The European Union (EU) is a political and economic union.",
]

result = extract_abbreviation_definition_pairs_parallel(texts)

for extraction in result.extractions:
    print(f"Abbreviation: {extraction.abbreviation}, Definition: {extraction.definition}")

Processing Large Files

For extracting abbreviations from large files, you can use the extract_abbreviations_from_file function:

Rust

use abbreviation_extractor::{extract_abbreviations_from_file, AbbreviationOptions, FileExtractionOptions};

let file_path = "path/to/your/large/file.txt";
let abbreviation_options = AbbreviationOptions::default();
let file_options = FileExtractionOptions::default();

let result = extract_abbreviations_from_file(file_path, abbreviation_options, file_options);

for extraction in result.extractions {
    println!("Abbreviation: {}, Definition: {}", extraction.abbreviation, extraction.definition);
}

Python

from abbreviation_extractor import extract_abbreviations_from_file

file_path = "path/to/your/large/file.txt"
result = extract_abbreviations_from_file(file_path)

for extraction in result.extractions:
    print(f"Abbreviation: {extraction.abbreviation}, Definition: {extraction.definition}")

You can customize the file extraction process by specifying additional parameters:

result = extract_abbreviations_from_file(
    file_path,
    most_common_definition=True,
    first_definition=False,
    tokenize=True,
    num_threads=4,
    show_progress=True,
    chunk_size=2048 * 1024  # 2MB chunks
)

Benchmark

Below is a comparison of how the abbreviation extractor performs in comparison to other libraries, namely Schwartz-Hearst and ScispaCy in terms of accuracy and speed.

Performance Comparison of Abbreviation Extractor Against Other Libraries

Abbrv Ground Truth abbreviation-extractor (This Library) abbreviation-extraction ScispaCy
'3-meAde' '3-methyl-adenine' '3-methyl-adenine' '3-methyl-adenine' 'N/A'
'5'UTR' '5' untranslated region' '5' untranslated region' 'N/A' 'N/A'
'5LO' '5-lipoxygenase' '5-lipoxygenase' '5-lipoxygenase' 'N/A'
'AAV' 'adeno-associated virus' 'adeno-associated virus' 'associated virus' 'adeno-associated virus'
'ACP' 'Enoyl-acyl carrier protein' 'Enoyl-acyl carrier protein' 'acyl carrier protein' 'Enoyl-acyl carrier protein'
'ADIOL' '5-androstene-3beta, 17beta-diol' '5-androstene-3beta, 17beta-diol' 'androstene-3beta, 17beta-diol' '5-androstene-3beta, 17beta-diol'
cAMP 'cyclic AMP' 'cyclic AMP' 'N/A'
'ALAD' '5-aminolaevulinic acid dehydratase' '5-aminolaevulinic acid dehydratase' 'N/A' '5-aminolaevulinic acid dehydratase'
'AMPK' 'AMP-activated protein kinase' 'AMP-activated protein kinase' 'N/A' 'AMP-activated protein kinase'
'AP' 'apurinic/apyrimidinic site' 'apurinic/apyrimidinic site' 'apyrimidinic site' 'apurinic/apyrimidinic site'
'AcCoA' 'acetyl coenzyme A' 'acetyl coenzyme A' 'N/A' 'acetyl coenzyme A'
'Ahr' 'aryl hydrocarbon receptor' 'aryl hydrocarbon receptor' 'N/A' 'aryl hydrocarbon receptor'
'BD' 'binding domain' 'binding domain' 'N/A' 'binding domain'
'8-OxoG' '7,8-dihydro-8-oxoguanine' '7,8-dihydro-8-oxoguanine' '8-oxoguanine' 'N/A'
dsRNA double-stranded RNA double-stranded RNA double-stranded RNA 'N/A'
'BERI' 'Biomolecular Engineering Research Institute' 'Biomolecular Engineering Research Institute' 'N/A' 'Biomolecular Engineering Research Institute'
'CTLs 'cytotoxic T lymphocytes' 'cytotoxic T lymphocytes' 'N/A' 'N/A'
'C-RBD' 'C-terminal RNA binding domain' 'C-terminal RNA binding domain' 'N/A' 'C-terminal RNA binding domain'
'CAP' 'cyclase-associated protein' 'cyclase-associated protein' 'N/A' 'cyclase-associated protein'

Speed Comparison with Other Abbreviation Extraction Libraries

Abbreviation Extraction Benchmark

API Reference

For detailed API documentation, please refer to the Rust docs or the Python module docstrings.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License.

Acknowledgements

This library is based on the Schwartz-Hearst algorithm:

A. Schwartz and M. Hearst (2003) A Simple Algorithm for Identifying Abbreviations Definitions in Biomedical Text. Biocomputing, 451-462.

The implementation is inspired by the original Python variant by Phil Gooch: abbreviation-extractor