This repository contains the source code for our paper:
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching
3DV 2021, Best Student Paper Award
Lahav Lipson, Zachary Teed and Jia Deng
@inproceedings{lipson2021raft,
title={RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching},
author={Lipson, Lahav and Teed, Zachary and Deng, Jia},
booktitle={International Conference on 3D Vision (3DV)},
year={2021}
}
The code has been tested with PyTorch 1.7 and Cuda 10.2
conda env create -f environment.yaml
conda activate raftstereo
and with PyTorch 1.11 and Cuda 11.3
conda env create -f environment_cuda11.yaml
conda activate raftstereo
To evaluate/train RAFT-stereo, you will need to download the required datasets.
To download the ETH3D and Middlebury test datasets for the demos, run
bash download_datasets.sh
By default stereo_datasets.py
will search for the datasets in these locations. You can create symbolic links to wherever the datasets were downloaded in the datasets
folder
├── datasets
├── FlyingThings3D
├── frames_cleanpass
├── frames_finalpass
├── disparity
├── Monkaa
├── frames_cleanpass
├── frames_finalpass
├── disparity
├── Driving
├── frames_cleanpass
├── frames_finalpass
├── disparity
├── KITTI
├── testing
├── training
├── devkit
├── Middlebury
├── MiddEval3
├── ETH3D
├── two_view_testing
iRaftStereo_RVC ranked 2nd on the stereo leaderboard at the Robust Vision Challenge at ECCV 2022.
To use the model, download + unzip models.zip and run
python demo.py --restore_ckpt models/iraftstereo_rvc.pth --context_norm instance -l=datasets/ETH3D/two_view_testing/*/im0.png -r=datasets/ETH3D/two_view_testing/*/im1.png
Thank you to Insta360 and Jiang et al. for their excellent work.
See their manuscript for training details: An Improved RaftStereo Trained with A Mixed Dataset for the Robust Vision Challenge 2022
Pretrained models can be downloaded by running
bash download_models.sh
or downloaded from google drive. We recommend our Middlebury model for in-the-wild images.
You can demo a trained model on pairs of images. To predict stereo for Middlebury, run
python demo.py --restore_ckpt models/raftstereo-middlebury.pth --corr_implementation alt --mixed_precision -l=datasets/Middlebury/MiddEval3/testF/*/im0.png -r=datasets/Middlebury/MiddEval3/testF/*/im1.png
Or for ETH3D:
python demo.py --restore_ckpt models/raftstereo-eth3d.pth -l=datasets/ETH3D/two_view_testing/*/im0.png -r=datasets/ETH3D/two_view_testing/*/im1.png
Our fastest model (uses the faster implementation):
python demo.py --restore_ckpt models/raftstereo-realtime.pth --shared_backbone --n_downsample 3 --n_gru_layers 2 --slow_fast_gru --valid_iters 7 --corr_implementation reg_cuda --mixed_precision
To save the disparity values as .npy
files, run any of the demos with the --save_numpy
flag.
If the camera intrinsics and camera baseline are known, disparity predictions can be converted to depth values using
Note that the units of the focal length are pixels not millimeters. (cx1-cx0) is the x-difference of principal points.
To evaluate a trained model on a validation set (e.g. Middlebury), run
python evaluate_stereo.py --restore_ckpt models/raftstereo-middlebury.pth --dataset middlebury_H
Our model is trained on two RTX-6000 GPUs using the following command. Training logs will be written to runs/
which can be visualized using tensorboard.
python train_stereo.py --batch_size 8 --train_iters 22 --valid_iters 32 --spatial_scale -0.2 0.4 --saturation_range 0 1.4 --n_downsample 2 --num_steps 200000 --mixed_precision
To train using significantly less memory, change --n_downsample 2
to --n_downsample 3
. This will slightly reduce accuracy.
To finetune the sceneflow model on the 23 scenes from the Middlebury 2014 stereo dataset, download the data using
chmod ug+x download_middlebury_2014.sh && ./download_middlebury_2014.sh
and run
python train_stereo.py --train_datasets middlebury_2014 --num_steps 4000 --image_size 384 1000 --lr 0.00002 --restore_ckpt models/raftstereo-sceneflow.pth --batch_size 2 --train_iters 22 --valid_iters 32 --spatial_scale -0.2 0.4 --saturation_range 0 1.4 --n_downsample 2 --mixed_precision
We provide a faster CUDA implementation of the correlation sampler which works with mixed precision feature maps.
cd sampler && python setup.py install && cd ..
Running demo.py, train_stereo.py or evaluate.py with --corr_implementation reg_cuda
together with --mixed_precision
will speed up the model without impacting performance.
To significantly decrease memory consumption on high resolution images, use --corr_implementation alt
. This implementation is slower than the default, however.