project-everest / everest

https://project-everest.github.io/
Apache License 2.0
193 stars 29 forks source link

Project Everest

Efficient, verified components for the HTTPS ecosystem.

See the website!

The everest script

The role of this script is to:

For developers, this script also allows you to:

This script is used heavily by continuous integration to pull, build & test project everest.

Pre-setup (Windows)

The script requires Visual Studio (specifically the F# and C++ components) to be present on your system. If you do not have it, you can install the community edition.

If you don't have Opam for Windows installed already, please download and run the 64-bit installer. It will also install Cygwin, then you can launch this script from a Cygwin prompt.

Usage

See ./everest help

Contributing

We welcome pull requests to this script, using the usual fork project + pull request GitHub model. For members of Everest, Jonathan Protzenko has the keys to the everest project on GitHub and can grant write permissions on this repository so that you can develop your feature in a branch directly. To be a member of the Everest team with access to the build system, please contact Jonathan for more info. Jonathan watches pull requests and will provide timely feedback unless he's on vacations or in another timezone.

A guided tour of the code

A Docker image is built and uploaded to the Docker Hub after a successful verification run of all projects. One can fetch it via docker pull projecteverest/everest. If you are running from this image, or if you have checked out all projects, here are some highlights from Project Everest.

Finding the proofs

Based our paper Verified Low-Level Programming Embedded in F*:

Source code for our tools

Running functional tests

The tests that best showcase our methodology are run via make -C hacl-star/test extract-c. This targets extracts to C code our AEAD development, along with a variety of cryptographic algorithms (x25519, poly1305, chacha20, xsalsa20); this target also compiles and runs test executables such as secure_api/krml-test-{vale,hacl}.exe.

Additional test targets not covered by make -C hacl-star/test extract-c include:

Running performance tests

With GCC

One can extract HACL* to a releasable set of C files, then run a performance benchmark using GCC, then show the performance results, via:

make -C hacl-star/test snapshot-gcc
make -C hacl-star/test perf-gcc
cat hacl-star/test/benchmark-gcc.txt

In the above sequence, gcc can be replaced with gcc-unrolled to have KaRaMeL unroll some loops when extracting the C code.

With CompCert

Due to licensing reasons, we do not believe we can safely redistribute CompCert. However, one can easily install CompCert via (Linux):

wget http://compcert.inria.fr/release/compcert-3.0.1.tgz
tar xzvf compcert-3.0.1.tgz
cd CompCert-3.0.1
./configure x86_64-linux
make -j 8
sudo make install
cd ..

Once this is done, the following series of commands will run performance benchmarks for CompCert:

make -C hacl-star/test snapshot-ccomp
make -C hacl-star/test perf-ccomp
cat hacl-star/test/benchmark-compcert.txt

Via the OpenSSL engine

A popular benchmarking tool is the OpenSSL "speed" command, which measures how many operations of a given kind may be performed over a span of 3 seconds, for different input sizes.

We wrote a new OpenSSL engine that packages some of our algorithms, meaning we can measure their performance using the aforementioned testing framework. Right now, the engine is set up so that our algorithms perform as many computations as the OpenSSL ones, but due to some minor API differences, there remains some work to ensure we compute the right result (e.g. detect when to perform the call to Poly1305_Finalize according to the state machine of OpenSSL).

After regenerating the GCC snapshot by make -C hacl-star/test snapshot-gcc, these OpenSSL engine tests can be run via make -C hacl-star/test/openssl-engine test.

Replaying the proofs

One can replay the proofs by running the high-level command: ./everest verify -j 8 where 8 is a suggested number of cores to use. One may want to allocate more cores and more memory to their Docker instance if applicable.