promptslab / Promptify

Prompt Engineering | Prompt Versioning | Use GPT or other prompt based models to get structured output. Join our discord for Prompt-Engineering, LLMs and other latest research
https://discord.gg/m88xfYMbK6
Apache License 2.0
3.26k stars 240 forks source link
chatgpt chatgpt-api chatgpt-python gpt-3 gpt-3-prompts gpt-4 gpt-4-api gpt3-library large-language-models machine-learning nlp openai prompt-engineering prompt-toolkit prompt-tuning prompt-versioning prompting prompts promptversioning transformers

Promptify

Prompt Engineering, Solve NLP Problems with LLM's & Easily generate different NLP Task prompts for popular generative models like GPT, PaLM, and more with Promptify

Promptify is released under the Apache 2.0 license. PyPI version http://makeapullrequest.com Community colab

Installation

With pip

This repository is tested on Python 3.7+, openai 0.25+.

You should install Promptify using Pip command

pip3 install promptify

or

pip3 install git+https://github.com/promptslab/Promptify.git

Quick tour

To immediately use a LLM model for your NLP task, we provide the Pipeline API.

from promptify import Prompter,OpenAI, Pipeline

sentence     =  """The patient is a 93-year-old female with a medical                
                history of chronic right hip pain, osteoporosis,                    
                hypertension, depression, and chronic atrial                        
                fibrillation admitted for evaluation and management             
                of severe nausea and vomiting and urinary tract             
                infection"""

model        = OpenAI(api_key) # or `HubModel()` for Huggingface-based inference or 'Azure' etc
prompter     = Prompter('ner.jinja') # select a template or provide custom template
pipe         = Pipeline(prompter , model)

result = pipe.fit(sentence, domain="medical", labels=None)

### Output

[
    {"E": "93-year-old", "T": "Age"},
    {"E": "chronic right hip pain", "T": "Medical Condition"},
    {"E": "osteoporosis", "T": "Medical Condition"},
    {"E": "hypertension", "T": "Medical Condition"},
    {"E": "depression", "T": "Medical Condition"},
    {"E": "chronic atrial fibrillation", "T": "Medical Condition"},
    {"E": "severe nausea and vomiting", "T": "Symptom"},
    {"E": "urinary tract infection", "T": "Medical Condition"},
    {"Branch": "Internal Medicine", "Group": "Geriatrics"},
]

GPT-3 Example with NER, MultiLabel, Question Generation Task

Features 🎮

### Supporting wide-range of Prompt-Based NLP tasks : | Task Name | Colab Notebook | Status | |-------------|-------|-------| | Named Entity Recognition | [NER Examples with GPT-3](https://colab.research.google.com/drive/16DUUV72oQPxaZdGMH9xH1WbHYu6Jqk9Q?usp=sharing) | ✅ | | Multi-Label Text Classification | [Classification Examples with GPT-3](https://colab.research.google.com/drive/1gNqDxNyMMUO67DxigzRAOa7C_Tcr2g6M?usp=sharing) | ✅ | | Multi-Class Text Classification | [Classification Examples with GPT-3](https://colab.research.google.com/drive/1gNqDxNyMMUO67DxigzRAOa7C_Tcr2g6M?usp=sharing) | ✅ | | Binary Text Classification | [Classification Examples with GPT-3](https://colab.research.google.com/drive/1gNqDxNyMMUO67DxigzRAOa7C_Tcr2g6M?usp=sharing) | ✅ | | Question-Answering | [QA Task Examples with GPT-3](https://colab.research.google.com/drive/1Yhl7iFb7JF0x89r1L3aDuufydVWX_VrL?usp=sharing) | ✅ | | Question-Answer Generation | [QA Task Examples with GPT-3](https://colab.research.google.com/drive/1Yhl7iFb7JF0x89r1L3aDuufydVWX_VrL?usp=sharing) | ✅ | | Relation-Extraction | [Relation-Extraction Examples with GPT-3](https://colab.research.google.com/drive/1iW4QNjllc8ktaQBWh3_04340V-tap1co?usp=sharing) | ✅ | | Summarization | [Summarization Task Examples with GPT-3](https://colab.research.google.com/drive/1PlXIAMDtrK-RyVdDhiSZy6ztcDWsNPNw?usp=sharing) | ✅ | | Explanation | [Explanation Task Examples with GPT-3](https://colab.research.google.com/drive/1PlXIAMDtrK-RyVdDhiSZy6ztcDWsNPNw?usp=sharing) | ✅ | | SQL Writer | [SQL Writer Example with GPT-3](https://colab.research.google.com/drive/1JNUYCTdqkdeIAxiX-NzR-4dngdmWj0rV?usp=sharing) | ✅ | | Tabular Data | | | | Image Data | | | | More Prompts | | | ## Docs [Promptify Docs](https://promptify.readthedocs.io/) ## Community
If you are interested in Prompt-Engineering, LLMs, ChatGPT and other latest research discussions, please consider joining PromptsLab
Join us on Discord
``` @misc{Promptify2022, title = {Promptify: Structured Output from LLMs}, author = {Pal, Ankit}, year = {2022}, howpublished = {\url{https://github.com/promptslab/Promptify}}, note = {Prompt-Engineering components for NLP tasks in Python} } ``` ## 💁 Contributing We welcome any contributions to our open source project, including new features, improvements to infrastructure, and more comprehensive documentation. Please see the [contributing guidelines](contribute.md)