Build Status | Coverage | Documentation |
---|---|---|
JobQueueMPI.jl is a Julia package that provides a simplified interface for running multiple jobs in parallel using MPI.jl.
It uses the Job Queue concept to manage the jobs and the MPI processes. The user can add jobs to the queue and the package will take care of sending them to the available MPI processes.
You can install JobQueueMPI.jl using the Julia package manager. From the Julia REPL, type ]
to enter the Pkg REPL mode and run:
pkg> add JobQueueMPI
First, when running a program using MPI, the user has to set the number of processes that will parallelize the computation. One of these processes will be the controller, and the others will be the workers.
We can easily delimit the areas of the code that will be executed only by the controller or the worker.
JobQueueMPI.jl has the following components:
Controller
: The controller is responsible for managing the jobs and the workers. It keeps track of the jobs that have been sent and received and sends the jobs to the available workers.Worker
: The worker is responsible for executing the jobs. It receives the jobs from the controller, executes them, and sends the results back to the controller.Users can call functions to compute jobs in parallel in two ways:
pmap
implementation that will put the function in the job queue and send it to the workers.
using JobQueueMPI
function sum_100(value) return value + 100 end
sum_100_answer = JobQueueMPI.pmap(sum_100, collect(1:10))
- Building the jobs and sending them to workers explicitly. There are examples of this structure in the test folder. This way is much more flexible than the first one, but it requires more code and knowledge about how MPI works.
```julia
using JobQueueMPI
mutable struct Message
value::Int
vector_idx::Int
end
all_jobs_done(controller) = JQM.is_job_queue_empty(controller) && !JQM.any_pending_jobs(controller)
function sum_100(message::Message)
message.value += 100
return message
end
function update_data(new_data, message::Message)
idx = message.vector_idx
value = message.value
return new_data[idx] = value
end
function workers_loop()
if JQM.is_worker_process()
worker = JQM.Worker()
while true
job = JQM.receive_job(worker)
message = JQM.get_message(job)
if message == JQM.TerminationMessage()
break
end
return_message = sum_100(message)
JQM.send_job_answer_to_controller(worker, return_message)
end
exit(0)
end
end
function job_queue(data)
JQM.mpi_init()
JQM.mpi_barrier()
T = eltype(data)
N = length(data)
if JQM.is_controller_process()
new_data = Array{T}(undef, N)
controller = JQM.Controller(JQM.num_workers())
for i in eachindex(data)
message = Message(data[i], i)
JQM.add_job_to_queue!(controller, message)
end
while !all_jobs_done(controller)
if !JQM.is_job_queue_empty(controller)
JQM.send_jobs_to_any_available_workers(controller)
end
if JQM.any_pending_jobs(controller)
job_answer = JQM.check_for_job_answers(controller)
if !isnothing(job_answer)
message = JQM.get_message(job_answer)
update_data(new_data, message)
end
end
end
JQM.send_termination_message()
return new_data
end
workers_loop()
JQM.mpi_barrier()
JQM.mpi_finalize()
return nothing
end
data = collect(1:10)
new_data = job_queue(data)