wildboottest
implements multiple fast wild cluster
bootstrap algorithms as developed in Roodman et al
(2019) and
MacKinnon, Nielsen & Webb
(2022).
It has similar, but more limited functionality than Stata's boottest, R's fwildcusterboot or Julia's WildBootTests.jl. It supports
At the moment, wildboottest
only computes wild cluster bootstrapped p-values, and no confidence intervals.
Other features that are currently not supported:
Direct support for statsmodels and linearmodels is work in progress.
If you'd like to cooperate, either send us an email or comment in the issues section!
You can install wildboottest
from PyPi by running
pip install wildboottest
import pandas as pd
import statsmodels.formula.api as sm
from wildboottest.wildboottest import wildboottest
df = pd.read_csv("https://raw.github.com/vincentarelbundock/Rdatasets/master/csv/sandwich/PetersenCL.csv")
model = sm.ols(formula='y ~ x', data=df)
wildboottest(model, param = "x", cluster = df.firm, B = 9999, bootstrap_type = '11')
# | param | statistic | p-value |
# |:--------|------------:|----------:|
# | x | 20.453 | 0.000 |
wildboottest(model, param = "x", cluster = df.firm, B = 9999, bootstrap_type = '31')
# | param | statistic | p-value |
# |:--------|------------:|----------:|
# | x | 30.993 | 0.000 |
# bootstrap inference for all coefficients
wildboottest(model, cluster = df.firm, B = 9999, bootstrap_type = '31')
# | param | statistic | p-value |
# |:----------|------------:|----------:|
# | Intercept | 0.443 | 0.655 |
# | x | 20.453 | 0.000 |
# non-clustered wild bootstrap inference
wildboottest(model, B = 9999, bootstrap_type = '11')
# | param | statistic | p-value |
# |:----------|------------:|----------:|
# | Intercept | 1.047 | 0.295 |
# | x | 36.448 | 0.000 |