py-why / EconML

ALICE (Automated Learning and Intelligence for Causation and Economics) is a Microsoft Research project aimed at applying Artificial Intelligence concepts to economic decision making. One of its goals is to build a toolkit that combines state-of-the-art machine learning techniques with econometrics in order to bring automation to complex causal inference problems. To date, the ALICE Python SDK (econml) implements orthogonal machine learning algorithms such as the double machine learning work of Chernozhukov et al. This toolkit is designed to measure the causal effect of some treatment variable(s) t on an outcome variable y, controlling for a set of features x.
https://www.microsoft.com/en-us/research/project/alice/
Other
3.87k stars 719 forks source link
causal-inference causality econometrics economics machine-learning treatment-effects

Build status PyPI version PyPI wheel Supported Python versions

econml-logo EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation

EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal to combine state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. The promise of EconML:

One of the biggest promises of machine learning is to automate decision making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X. The methods implemented are applicable even with observational (non-experimental or historical) datasets. For the estimation results to have a causal interpretation, some methods assume no unobserved confounders (i.e. there is no unobserved variable not included in X, W that simultaneously has an effect on both T and Y), while others assume access to an instrument Z (i.e. an observed variable Z that has an effect on the treatment T but no direct effect on the outcome Y). Most methods provide confidence intervals and inference results.

For detailed information about the package, consult the documentation at https://econml.azurewebsites.net/.

For information on use cases and background material on causal inference and heterogeneous treatment effects see our webpage at https://www.microsoft.com/en-us/research/project/econml/

Table of Contents - [News](#news) - [Getting Started](#getting-started) - [Installation](#installation) - [Usage Examples](#usage-examples) - [Estimation Methods](#estimation-methods) - [Interpretability](#interpretability) - [Causal Model Selection and Cross-Validation](#causal-model-selection-and-cross-validation) - [Inference](#inference) - [Policy Learning](#policy-learning) - [For Developers](#for-developers) - [Running the tests](#running-the-tests) - [Generating the documentation](#generating-the-documentation) - [Blogs and Publications](#blogs-and-publications) - [Citation](#citation) - [Contributing and Feedback](#contributing-and-feedback) - [Community](#community) - [References](#references)

News

If you'd like to contribute to this project, see the Help Wanted section below.

July 3, 2024: Release v0.15.1, see release notes here

Previous releases **February 12, 2024:** Release v0.15.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.15.0) **November 11, 2023:** Release v0.15.0b1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.15.0b1) **May 19, 2023:** Release v0.14.1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.14.1) **November 16, 2022:** Release v0.14.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.14.0) **June 17, 2022:** Release v0.13.1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.13.1) **January 31, 2022:** Release v0.13.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.13.0) **August 13, 2021:** Release v0.12.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0) **August 5, 2021:** Release v0.12.0b6, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0b6) **August 3, 2021:** Release v0.12.0b5, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0b5) **July 9, 2021:** Release v0.12.0b4, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0b4) **June 25, 2021:** Release v0.12.0b3, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0b3) **June 18, 2021:** Release v0.12.0b2, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0b2) **June 7, 2021:** Release v0.12.0b1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0b1) **May 18, 2021:** Release v0.11.1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.11.1) **May 8, 2021:** Release v0.11.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.11.0) **March 22, 2021:** Release v0.10.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.10.0) **March 11, 2021:** Release v0.9.2, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.9.2) **March 3, 2021:** Release v0.9.1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.9.1) **February 20, 2021:** Release v0.9.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.9.0) **January 20, 2021:** Release v0.9.0b1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.9.0b1) **November 20, 2020:** Release v0.8.1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.8.1) **November 18, 2020:** Release v0.8.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.8.0) **September 4, 2020:** Release v0.8.0b1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.8.0b1) **March 6, 2020:** Release v0.7.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.7.0) **February 18, 2020:** Release v0.7.0b1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.7.0b1) **January 10, 2020:** Release v0.6.1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.6.1) **December 6, 2019:** Release v0.6, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.6) **November 21, 2019:** Release v0.5, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.5). **June 3, 2019:** Release v0.4, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.4). **May 3, 2019:** Release v0.3, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.3). **April 10, 2019:** Release v0.2, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.2). **March 6, 2019:** Release v0.1, welcome to have a try and provide feedback.

Getting Started

Installation

Install the latest release from PyPI:

pip install econml

To install from source, see For Developers section below.

Usage Examples

Estimation Methods

Double Machine Learning (aka RLearner) (click to expand) * Linear final stage ```Python from econml.dml import LinearDML from sklearn.linear_model import LassoCV from econml.inference import BootstrapInference est = LinearDML(model_y=LassoCV(), model_t=LassoCV()) ### Estimate with OLS confidence intervals est.fit(Y, T, X=X, W=W) # W -> high-dimensional confounders, X -> features treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals ### Estimate with bootstrap confidence intervals est.fit(Y, T, X=X, W=W, inference='bootstrap') # with default bootstrap parameters est.fit(Y, T, X=X, W=W, inference=BootstrapInference(n_bootstrap_samples=100)) # or customized lb, ub = est.effect_interval(X_test, alpha=0.05) # Bootstrap confidence intervals ``` * Sparse linear final stage ```Python from econml.dml import SparseLinearDML from sklearn.linear_model import LassoCV est = SparseLinearDML(model_y=LassoCV(), model_t=LassoCV()) est.fit(Y, T, X=X, W=W) # X -> high dimensional features treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # Confidence intervals via debiased lasso ``` * Generic Machine Learning last stage ```Python from econml.dml import NonParamDML from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier est = NonParamDML(model_y=RandomForestRegressor(), model_t=RandomForestClassifier(), model_final=RandomForestRegressor(), discrete_treatment=True) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) ```
Dynamic Double Machine Learning (click to expand) ```Python from econml.panel.dml import DynamicDML # Use defaults est = DynamicDML() # Or specify hyperparameters est = DynamicDML(model_y=LassoCV(cv=3), model_t=LassoCV(cv=3), cv=3) est.fit(Y, T, X=X, W=None, groups=groups, inference="auto") # Effects treatment_effects = est.effect(X_test) # Confidence intervals lb, ub = est.effect_interval(X_test, alpha=0.05) ```
Causal Forests (click to expand) ```Python from econml.dml import CausalForestDML from sklearn.linear_model import LassoCV # Use defaults est = CausalForestDML() # Or specify hyperparameters est = CausalForestDML(criterion='het', n_estimators=500, min_samples_leaf=10, max_depth=10, max_samples=0.5, discrete_treatment=False, model_t=LassoCV(), model_y=LassoCV()) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) # Confidence intervals via Bootstrap-of-Little-Bags for forests lb, ub = est.effect_interval(X_test, alpha=0.05) ```
Orthogonal Random Forests (click to expand) ```Python from econml.orf import DMLOrthoForest, DROrthoForest from econml.sklearn_extensions.linear_model import WeightedLasso, WeightedLassoCV # Use defaults est = DMLOrthoForest() est = DROrthoForest() # Or specify hyperparameters est = DMLOrthoForest(n_trees=500, min_leaf_size=10, max_depth=10, subsample_ratio=0.7, lambda_reg=0.01, discrete_treatment=False, model_T=WeightedLasso(alpha=0.01), model_Y=WeightedLasso(alpha=0.01), model_T_final=WeightedLassoCV(cv=3), model_Y_final=WeightedLassoCV(cv=3)) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) # Confidence intervals via Bootstrap-of-Little-Bags for forests lb, ub = est.effect_interval(X_test, alpha=0.05) ```
Meta-Learners (click to expand) * XLearner ```Python from econml.metalearners import XLearner from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor est = XLearner(models=GradientBoostingRegressor(), propensity_model=GradientBoostingClassifier(), cate_models=GradientBoostingRegressor()) est.fit(Y, T, X=np.hstack([X, W])) treatment_effects = est.effect(np.hstack([X_test, W_test])) # Fit with bootstrap confidence interval construction enabled est.fit(Y, T, X=np.hstack([X, W]), inference='bootstrap') treatment_effects = est.effect(np.hstack([X_test, W_test])) lb, ub = est.effect_interval(np.hstack([X_test, W_test]), alpha=0.05) # Bootstrap CIs ``` * SLearner ```Python from econml.metalearners import SLearner from sklearn.ensemble import GradientBoostingRegressor est = SLearner(overall_model=GradientBoostingRegressor()) est.fit(Y, T, X=np.hstack([X, W])) treatment_effects = est.effect(np.hstack([X_test, W_test])) ``` * TLearner ```Python from econml.metalearners import TLearner from sklearn.ensemble import GradientBoostingRegressor est = TLearner(models=GradientBoostingRegressor()) est.fit(Y, T, X=np.hstack([X, W])) treatment_effects = est.effect(np.hstack([X_test, W_test])) ```
Doubly Robust Learners (click to expand) * Linear final stage ```Python from econml.dr import LinearDRLearner from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier est = LinearDRLearner(model_propensity=GradientBoostingClassifier(), model_regression=GradientBoostingRegressor()) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) ``` * Sparse linear final stage ```Python from econml.dr import SparseLinearDRLearner from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier est = SparseLinearDRLearner(model_propensity=GradientBoostingClassifier(), model_regression=GradientBoostingRegressor()) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) ``` * Nonparametric final stage ```Python from econml.dr import ForestDRLearner from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier est = ForestDRLearner(model_propensity=GradientBoostingClassifier(), model_regression=GradientBoostingRegressor()) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) ```
Double Machine Learning with Instrumental Variables (click to expand) * Orthogonal instrumental variable learner ```Python from econml.iv.dml import OrthoIV est = OrthoIV(projection=False, discrete_treatment=True, discrete_instrument=True) est.fit(Y, T, Z=Z, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals ``` * Nonparametric double machine learning with instrumental variable ```Python from econml.iv.dml import NonParamDMLIV est = NonParamDMLIV(projection=False, discrete_treatment=True, discrete_instrument=True) est.fit(Y, T, Z=Z, X=X, W=W) # no analytical confidence interval available treatment_effects = est.effect(X_test) ```
Doubly Robust Machine Learning with Instrumental Variables (click to expand) * Linear final stage ```Python from econml.iv.dr import LinearDRIV est = LinearDRIV(discrete_instrument=True, discrete_treatment=True) est.fit(Y, T, Z=Z, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals ``` * Sparse linear final stage ```Python from econml.iv.dr import SparseLinearDRIV est = SparseLinearDRIV(discrete_instrument=True, discrete_treatment=True) est.fit(Y, T, Z=Z, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # Debiased lasso confidence intervals ``` * Nonparametric final stage ```Python from econml.iv.dr import ForestDRIV est = ForestDRIV(discrete_instrument=True, discrete_treatment=True) est.fit(Y, T, Z=Z, X=X, W=W) treatment_effects = est.effect(X_test) # Confidence intervals via Bootstrap-of-Little-Bags for forests lb, ub = est.effect_interval(X_test, alpha=0.05) ``` * Linear intent-to-treat (discrete instrument, discrete treatment) ```Python from econml.iv.dr import LinearIntentToTreatDRIV from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier est = LinearIntentToTreatDRIV(model_y_xw=GradientBoostingRegressor(), model_t_xwz=GradientBoostingClassifier(), flexible_model_effect=GradientBoostingRegressor()) est.fit(Y, T, Z=Z, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals ```
Deep Instrumental Variables (click to expand) ```Python import keras from econml.iv.nnet import DeepIV treatment_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)), keras.layers.Dropout(0.17), keras.layers.Dense(64, activation='relu'), keras.layers.Dropout(0.17), keras.layers.Dense(32, activation='relu'), keras.layers.Dropout(0.17)]) response_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)), keras.layers.Dropout(0.17), keras.layers.Dense(64, activation='relu'), keras.layers.Dropout(0.17), keras.layers.Dense(32, activation='relu'), keras.layers.Dropout(0.17), keras.layers.Dense(1)]) est = DeepIV(n_components=10, # Number of gaussians in the mixture density networks) m=lambda z, x: treatment_model(keras.layers.concatenate([z, x])), # Treatment model h=lambda t, x: response_model(keras.layers.concatenate([t, x])), # Response model n_samples=1 # Number of samples used to estimate the response ) est.fit(Y, T, X=X, Z=Z) # Z -> instrumental variables treatment_effects = est.effect(X_test) ```

See the References section for more details.

Interpretability

Tree Interpreter of the CATE model (click to expand) ```Python from econml.cate_interpreter import SingleTreeCateInterpreter intrp = SingleTreeCateInterpreter(include_model_uncertainty=True, max_depth=2, min_samples_leaf=10) # We interpret the CATE model's behavior based on the features used for heterogeneity intrp.interpret(est, X) # Plot the tree plt.figure(figsize=(25, 5)) intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12) plt.show() ``` ![image](notebooks/images/dr_cate_tree.png)
Policy Interpreter of the CATE model (click to expand) ```Python from econml.cate_interpreter import SingleTreePolicyInterpreter # We find a tree-based treatment policy based on the CATE model intrp = SingleTreePolicyInterpreter(risk_level=0.05, max_depth=2, min_samples_leaf=1,min_impurity_decrease=.001) intrp.interpret(est, X, sample_treatment_costs=0.2) # Plot the tree plt.figure(figsize=(25, 5)) intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12) plt.show() ``` ![image](notebooks/images/dr_policy_tree.png)
SHAP values for the CATE model (click to expand) ```Python import shap from econml.dml import CausalForestDML est = CausalForestDML() est.fit(Y, T, X=X, W=W) shap_values = est.shap_values(X) shap.summary_plot(shap_values['Y0']['T0']) ```

Causal Model Selection and Cross-Validation

Causal model selection with the `RScorer` (click to expand) ```Python from econml.score import RScorer # split data in train-validation X_train, X_val, T_train, T_val, Y_train, Y_val = train_test_split(X, T, y, test_size=.4) # define list of CATE estimators to select among reg = lambda: RandomForestRegressor(min_samples_leaf=20) clf = lambda: RandomForestClassifier(min_samples_leaf=20) models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True, cv=3)), ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())), ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(), propensity_model=clf())), ('slearner', SLearner(overall_model=reg())), ('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(), model_final=reg(), cv=3)), ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(), discrete_treatment=True, cv=3)), ('dml3dlasso', DML(model_y=reg(), model_t=clf(), model_final=LassoCV(cv=3, fit_intercept=False), discrete_treatment=True, featurizer=PolynomialFeatures(degree=3), cv=3)) ] # fit cate models on train data models = [(name, mdl.fit(Y_train, T_train, X=X_train)) for name, mdl in models] # score cate models on validation data scorer = RScorer(model_y=reg(), model_t=clf(), discrete_treatment=True, cv=3, mc_iters=2, mc_agg='median') scorer.fit(Y_val, T_val, X=X_val) rscore = [scorer.score(mdl) for _, mdl in models] # select the best model mdl, _ = scorer.best_model([mdl for _, mdl in models]) # create weighted ensemble model based on score performance mdl, _ = scorer.ensemble([mdl for _, mdl in models]) ```
First Stage Model Selection (click to expand) EconML's cross-fitting estimators provide built-in functionality for first-stage model selection. This support can work with existing sklearn model selection classes such as `LassoCV` or `GridSearchCV`, or you can pass a list of models to choose the best from among them when cross-fitting. ```Python from econml.dml import LinearDML from sklearn import clone from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LassoCV from sklearn.model_selection import GridSearchCV cv_model = GridSearchCV( estimator=RandomForestRegressor(), param_grid={ "max_depth": [3, None], "n_estimators": (10, 30, 50, 100, 200), "max_features": (2, 4, 6), }, cv=5, ) est = LinearDML(model_y=cv_model, # use sklearn's grid search to select the best Y model model_t=[RandomForestRegressor(), LassoCV()]) # use built-in model selection to choose between forest and linear models for T model ```

Inference

Whenever inference is enabled, then one can get a more structure InferenceResults object with more elaborate inference information, such as p-values and z-statistics. When the CATE model is linear and parametric, then a summary() method is also enabled. For instance:

  from econml.dml import LinearDML
  # Use defaults
  est = LinearDML()
  est.fit(Y, T, X=X, W=W)
  # Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
  est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)
  # Get the population summary for the entire sample X
  est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)
  #  Get the parameter inference summary for the final model
  est.summary()
Example Output (click to expand) ```Python # Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i] est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3) ``` ![image](notebooks/images/summary_frame.png) ```Python # Get the population summary for the entire sample X est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001) ``` ![image](notebooks/images/population_summary.png) ```Python # Get the parameter inference summary for the final model est.summary() ``` ![image](notebooks/images/summary.png)

Policy Learning

You can also perform direct policy learning from observational data, using the doubly robust method for offline policy learning. These methods directly predict a recommended treatment, without internally fitting an explicit model of the conditional average treatment effect.

Doubly Robust Policy Learning (click to expand) ```Python from econml.policy import DRPolicyTree, DRPolicyForest from sklearn.ensemble import RandomForestRegressor # fit a single binary decision tree policy policy = DRPolicyTree(max_depth=1, min_impurity_decrease=0.01, honest=True) policy.fit(y, T, X=X, W=W) # predict the recommended treatment recommended_T = policy.predict(X) # plot the binary decision tree plt.figure(figsize=(10,5)) policy.plot() # get feature importances importances = policy.feature_importances_ # fit a binary decision forest policy = DRPolicyForest(max_depth=1, min_impurity_decrease=0.01, honest=True) policy.fit(y, T, X=X, W=W) # predict the recommended treatment recommended_T = policy.predict(X) # plot the first tree in the ensemble plt.figure(figsize=(10,5)) policy.plot(0) # get feature importances importances = policy.feature_importances_ ``` ![image](images/policy_tree.png)

To see more complex examples, go to the notebooks section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML documentation.

For Developers

You can get started by cloning this repository. We use setuptools for building and distributing our package. We rely on some recent features of setuptools, so make sure to upgrade to a recent version with pip install setuptools --upgrade. Then from your local copy of the repository you can run pip install -e . to get started (but depending on what you're doing you might want to install with extras instead, like pip install -e .[plt] if you want to use matplotlib integration, or you can use pip install -e .[all] to include all extras).

Pre-commit hooks

We use the pre-commit framework to enforce code style and run checks before every commit. To install the pre-commit hooks, make sure you have pre-commit installed (pip install pre-commit) and then run pre-commit install in the root of the repository. This will install the hooks and run them automatically before every commit. If you want to run the hooks manually, you can run pre-commit run --all-files.

Finding issues to help with

If you're looking to contribute to the project, we have a number of issues tagged with the up for grabs and help wanted labels. "Up for grabs" issues are ones that we think that people without a lot of experience in our codebase may be able to help with, while "Help wanted" issues are valuable improvements to the library that our team currently does not have time to prioritize where we would greatly appreciate community-initiated PRs, but which might be more involved.

Running the tests

This project uses pytest to run tests for continuous integration. It is also possible to use pytest to run tests locally, but this isn't recommended because it will take an extremely long time and some tests are specific to certain environments or scenarios that have additional dependencies. However, if you'd like to do this anyway, to run all tests locally after installing the package you can use pip install pytest pytest-xdist pytest-cov coverage[toml] (as well as pip install jupyter jupyter-client nbconvert nbformat seaborn xgboost tqdm for the dependencies to run all of our notebooks as tests) followed by python -m pytest.

Because running all tests can be very time-consuming, we recommend running only the relevant subset of tests when developing locally. The easiest way to do this is to rely on pytest's compatibility with unittest, so you can just run python -m unittest econml.tests.test_module to run all tests in a given module, or python -m unittest econml.tests.test_module.TestClass to run all tests in a given class. You can also run python -m unittest econml.tests.test_module.TestClass.test_method to run a single test method.

Generating the documentation

This project's documentation is generated via Sphinx. Note that we use graphviz's dot application to produce some of the images in our documentation, so you should make sure that dot is installed and in your path.

To generate a local copy of the documentation from a clone of this repository, just run python setup.py build_sphinx -W -E -a, which will build the documentation and place it under the build/sphinx/html path.

The reStructuredText files that make up the documentation are stored in the docs directory; module documentation is automatically generated by the Sphinx build process.

Release process

We use GitHub Actions to build and publish the package and documentation. To create a new release, an admin should perform the following steps:

  1. Update the version number in econml/_version.py and add a mention of the new version in the news section of this file and commit the changes.
  2. Manually run the publish_package.yml workflow to build and publish the package to PyPI.
  3. Manually run the publish_docs.yml workflow to build and publish the documentation.
  4. Under https://github.com/py-why/EconML/releases, create a new release with a corresponding tag, and update the release notes.

Blogs and Publications

Citation

If you use EconML in your research, please cite us as follows:

Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis. EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.com/py-why/EconML, 2019. Version 0.x.

BibTex:

@misc{econml,
  author={Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis},
  title={{EconML}: {A Python Package for ML-Based Heterogeneous Treatment Effects Estimation}},
  howpublished={https://github.com/py-why/EconML},
  note={Version 0.x},
  year={2019}
}

Contributing and Feedback

This project welcomes contributions and suggestions. We use the DCO bot to enforce a Developer Certificate of Origin which requires users to sign-off on their commits. This is a simple way to certify that you wrote or otherwise have the right to submit the code you are contributing to the project. Git provides a -s command line option to include this automatically when you commit via git commit.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the PyWhy Code of Conduct.

Community

<img src="doc/spec/img/pywhy-logo.png" width="80px" align="left" style="margin-right: 10px;", alt="pywhy-logo">

EconML is a part of PyWhy, an organization with a mission to build an open-source ecosystem for causal machine learning.

PyWhy also has a Discord, which serves as a space for like-minded casual machine learning researchers and practitioners of all experience levels to come together to ask and answer questions, discuss new features, and share ideas.

We invite you to join us at regular office hours and community calls in the Discord.

References

Athey, Susan, and Stefan Wager. Policy learning with observational data. Econometrica 89.1, 133-161, 2021.

X Nie, S Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. Biometrika 108.2, 299-319, 2021.

V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019. (Spotlight Presentation)

D. Foster, V. Syrgkanis. Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019. (Best Paper Award)

M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

S. Künzel, J. Sekhon, J. Bickel and B. Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10), 4156-4165, 2019.

S. Athey, J. Tibshirani, S. Wager. Generalized random forests. Annals of Statistics, 47, no. 2, 1148--1178, 2019.

V. Chernozhukov, D. Nekipelov, V. Semenova, V. Syrgkanis. Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models. Arxiv preprint arxiv:1806.04823, 2018.

S. Wager, S. Athey. Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113:523, 1228-1242, 2018.

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. Double Machine Learning for Treatment and Causal Parameters. ArXiv preprint arXiv:1608.00060, 2016.

Dudik, M., Erhan, D., Langford, J., & Li, L. Doubly robust policy evaluation and optimization. Statistical Science, 29(4), 485-511, 2014.