Getting Started | Documentation | Community | Contributing
Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notably, it was designed with these principles in mind:
Pyro was originally developed at Uber AI and is now actively maintained by community contributors, including a dedicated team at the Broad Institute. In 2019, Pyro became a project of the Linux Foundation, a neutral space for collaboration on open source software, open standards, open data, and open hardware.
For more information about the high level motivation for Pyro, check out our launch blog post. For additional blog posts, check out work on experimental design and time-to-event modeling in Pyro.
Install using pip:
pip install pyro-ppl
Install from source:
git clone git@github.com:pyro-ppl/pyro.git
cd pyro
git checkout master # master is pinned to the latest release
pip install .
Install with extra packages:
To install the dependencies required to run the probabilistic models included in the examples
/tutorials
directories, please use the following command:
pip install pyro-ppl[extras]
Make sure that the models come from the same release version of the Pyro source code as you have installed.
For recent features you can install Pyro from source.
Install Pyro using pip:
pip install git+https://github.com/pyro-ppl/pyro.git
or, with the extras
dependency to run the probabilistic models included in the examples
/tutorials
directories:
pip install git+https://github.com/pyro-ppl/pyro.git#egg=project[extras]
Install Pyro from source:
git clone https://github.com/pyro-ppl/pyro
cd pyro
pip install . # pip install .[extras] for running models in examples/tutorials
Refer to the instructions here.
If you use Pyro, please consider citing:
@article{bingham2019pyro,
author = {Eli Bingham and
Jonathan P. Chen and
Martin Jankowiak and
Fritz Obermeyer and
Neeraj Pradhan and
Theofanis Karaletsos and
Rohit Singh and
Paul A. Szerlip and
Paul Horsfall and
Noah D. Goodman},
title = {Pyro: Deep Universal Probabilistic Programming},
journal = {J. Mach. Learn. Res.},
volume = {20},
pages = {28:1--28:6},
year = {2019},
url = {http://jmlr.org/papers/v20/18-403.html}
}