qiang-Blazer / MAM

This is the code of MAM (Motor Assessment Model) based on Pytorch
MIT License
3 stars 0 forks source link

MAM

This is the code of MAM (Motor Assessment Model) based on Pytorch.

We provide a small dataset in ./prepared_data to demo the codes.

Installation

git clone https://github.com/qiang-Blazer/MAM.git

This will be done in 10 seconds.

Prerequisites

We run the codes on the Unbuntu 20.04 operating system.

matplotlib==3.6.0
numpy==1.23.1
pandas==2.0.0
PyYAML==6.0
scikit-learn==1.1.2
torch==1.12.1
tqdm==4.64.1
transformers==4.28.1

Install required packages:

pip install -r requirements.txt

Pretrain the central part of the model

python pretrain_clip.py

The pre-trained weights will be in ./checkpoints.

This will be down in 5 minutes for the demo dataset.

Train

python main.py

The results will be in runs.

Inference

python inference.py

Parameters

Parameter Name Type Default Value Description
-epoch int 300 Number of epochs
-batch_size int 32 Mini-batch size in training
-cv_id int 0 The cross-validation ID, choose from [0,1,2,3,4]
-joint_in_channels int 3 Input channel numbers of joint feature
-joint_hidden_channels int 64 Hidden channel numbers of joint feature
-time_window int 10 The size of the sliding window in the time dimension
-time_step int 1 The step of the sliding window in the time dimension
-optimizer str "SGD" Optimizer used in training
-lr float 0.001 The starting learning rate
-scheduler str "CyclicLR" Scheduler used in training
-seed int 0 The random seed
-tl_margin float 0.4 The triplet loss margin
-with_info bool True If use the info characteristics