Robust Multimodal Vehicle Detection in Foggy Weather Using Complementary Lidar and Radar Signals, CVPR 2021.
MVDNet uses an old version of Detectron2 (i.e., 0.1.1) with minor modifications. To download and install the compatible version:
git clone https://github.com/qiank10/detectron2.git
git checkout alt-0.1.1
cd detectron2 && pip install -e .
Install MVDNet
git clone https://github.com/qiank10/MVDNet.git
cd MVDNet && pip install -e .
Download the Oxford Radar RobotCar Dataset. Currently, only the vehicles in the first data record (Date: 10/01/2019, Time: 11:46:21 GMT) are labeled. After unzipping the files, the directory should look like this:
# Oxford Radar RobotCar Data Record
|-- DATA_PATH
|-- gt
|-- radar
|-- velodyne_left
|-- velodyne_right
|-- vo
|-- radar.timestamps
|-- velodyne_left.timestamps
|-- velodyne_right.timestamps
|-- ...
Prepare the radar data:
python data/sdk/prepare_radar_data.py --data_path DATA_PATH --image_size 320 --resolution 0.2
Prepare the lidar data:
python data/sdk/prepare_lidar_data.py --data_path DATA_PATH
Prepare the foggy lidar test set with specified fog density, e.g., 0.05:
python data/sdk/prepare_fog_data.py --data_path DATA_PATH --beta 0.05
The processed data is organized as follows:
# Oxford Radar RobotCar Data Record
|-- DATA_PATH
|-- processed
|-- radar
|-- 1547120789640420.jpg
|-- ...
|-- radar_history
|-- 1547120789640420_k.jpg # The k-th radar frame preceding the frame at the timestamp 1547120789640420, k=1,2,3,4.
|-- ...
|-- lidar
|-- 1547120789640420.bin
|-- ...
|-- lidar_history
|-- 1547120789640420_k.bin # Link to the k-th lidar frame preceding the frame at the timestamp 1547120789640420, k=1,2,3,4.
|-- 1547120789640420_k_T.bin # Transform matrix between the k-th preceding lidar frame and the current frame.
|-- ...
|-- lidar_fog_0.05 # Foggy lidar data with fog density as 0.05
|-- 1547120789640420.bin
|-- ...
|-- lidar_history_fog_0.05
|-- 1547120789640420_k.bin
|-- 1547120789640420_k_T.bin
|-- ...
Both 2D and 3D labels are in
./data/RobotCar/object/
python ./tools/train.py --config ./configs/train_config.yaml
python ./tools/eval.py --config ./configs/eval_config.yaml