qinghuannn / PAMFN

[TIP 2024] Official Implementation of Progressive Adaptive Multimodal Fusion Network (PAMFN)
MIT License
6 stars 0 forks source link

[TIP 2024] Official Implementation of Progressive Adaptive Multimodal Fusion Network (PAMFN)

Installation

Build the python environment

Codes are tested on RTX 3090 and I not sure you can get the same results on different GPUs or different python environment.

1. conda create -n PAMFN python=3.8 -y
2. conda activate PAMFN
3. conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge -y
4. pip install -r requires.txt

Download extracted features and pretrained models

The extracted features and pretrained models can be downloaded from here and should be placed in the current directory.

./
├── data/
└── pretrained_models

Evaluation

Using the following command to evaluate the pretrained model:

python main.py --gpu {gpu_id} --feats {feature_type} --action {action_type} --multi_modality --test

Training

Training the modality-specific branch

Using the following command to train a modality-specific branch:

python main.py --gpu {gpu_id} --feats {feature_type} --action {action_type} --modality {modality_type}

An Example:

python main.py --gpu 0 --feats 2 --action Ball --modality V

Training the mixed-modality branch

Using the following command to train the mixed-modality branch:

python main.py --gpu {gpu_id} --feats {feature_type} --action {action_type} --multi_modality

An Example:

python main.py --gpu 0 --feats 2 --action Ball --multi_modality

Citation

Please cite this work if you find it useful:

@article{zeng2024multimodal,
  title={Multimodal Action Quality Assessment},
  author={Zeng, Ling-An and Zheng, Wei-Shi},
  journal={IEEE Transactions on Image Processing},
  year={2024},
  publisher={IEEE}
}