Implement cascade cnn for license plate detection
Train process details in
process.txt
preprocess_data
: create positive data and negative data, resize, write file list, test recall lmdb
: change data format to lmdb train_net
: train net script
: no use Test process details in lp_test.py, you can run
python lp_test.py
You need to change some parameters as follows:
caffe_root
: caffe root dir workspace
: code dir img_dir
: image dir img_list_file
: image list file min_lp_size
: minimum license plate height size max_lp_size
: maximum license plate height size save_res_dir
: save result dir run lp_test.py
load model
detect license plate
save results
I set up the ratio of w and h to 3:1. net input size is as follow:
12-net
: 12x412-cal
: 36x1224-net
: 36x1224-cal
: 36x1248-net
: 72x2448-cal
: 72x24For my dataset, I only use 12-net, 12-cal-net, 24-net and 48-cal-net.
You can change the parameters if you want.
More information, you can read the paper and see the code.
Use 12-net, 12-cal-net, 24-net and 48-cal-net, runs at 10 FPS
on a single CPU
(Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz) for 640x360
images.
For more accurary, you can use 12-net, 12-cal, 24-net, 24-cal, 48-net and 48-cal.
Detection results: