This is a language detection library, aiming for both precision and performance.
While building Quickwit, a search engine tailored for log and tracing data, we found ourselves needing a light, fast, and precise language detection library in Rust that works well with our high throughput requirement. The full story and how it works are detailed in this blog post.
It uses a multiclass logistic regression model over:
We use the hashing trick and project these features over a space of size 4_096
.
The logistic regression is trained in the python notebook attached,
and used to generate weight.rs
.
The following compares the throughput using the simple benchmark found in this repository and the accuracy using whatlang-accuracy-benchmark benchmark. Overall, Whichlang is about 10x faster and slightly more accurate than Whatlang.
To generate the throughput benchmark, we ported the benchmark available in this repository. Please, check this repository to see our changes.
Processing Time (µs) | Throughput (MiB/s) | |
---|---|---|
whatlang/short | 16.62 | 1.66 |
whatlang/long | 62.00 | 9.42 |
whichlang/short | 0.26 | 105.69 |
whichlang/long | 5.21 | 112.31 |
To generate the accuracy benchmark, we have changed the whatlang-accuracy-benchmark to add support for Whichlang. Given that Whatlang supports more languages, we have used its FilterList feature to restrict its analysis to only languages that are supported in Whichlang. We also use the trigram
method in Whatlang. Please, check this repository to see our changes.
Crate: Whatlang
AVG: 91.69%
| LANG | AVG | <= 20 | 21-50 | 51-100 | > 100 |
|------------|--------|---------|--------|--------|---------|
| Arabic | 99.68% | 99.51% | 99.64% | 99.83% | 99.76% |
| Mandarin | 96.09% | 97.54% | 96.92% | 95.45% | 94.43% |
| German | 88.57% | 70.00% | 88.53% | 96.61% | 99.16% |
| English | 85.99% | 57.82% | 88.37% | 97.97% | 99.78% |
| French | 90.88% | 72.84% | 92.51% | 98.54% | 99.65% |
| Hindi | 99.80% | 100.00% | 99.83% | 99.78% | 99.61% |
| Italian | 87.75% | 66.67% | 87.74% | 97.04% | 99.54% |
| Japanese | 94.37% | 93.97% | 96.04% | 94.30% | 93.18% |
| Korean | 99.17% | 98.88% | 99.69% | 99.44% | 98.66% |
| Dutch | 89.68% | 72.13% | 89.78% | 97.40% | 99.40% |
| Portuguese | 88.08% | 72.90% | 85.76% | 95.22% | 98.44% |
| Russian | 99.98% | 100.00% | 99.96% | 99.98% | 100.00% |
| Spanish | 82.91% | 55.45% | 82.24% | 94.85% | 99.10% |
| Swedish | 84.16% | 58.33% | 83.78% | 96.35% | 98.18% |
| Turkish | 86.73% | 61.01% | 88.94% | 97.32% | 99.63% |
| Vietnamese | 93.23% | 82.84% | 92.96% | 97.88% | 99.24% |
| AVG | 91.69% | 78.74% | 92.04% | 97.37% | 98.61% |
Crate: Whichlang
AVG: 97.03%
| LANG | AVG | <= 20 | 21-50 | 51-100 | > 100 |
|------------|---------|---------|---------|---------|---------|
| Arabic | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% |
| Mandarin | 98.65% | 98.69% | 98.48% | 98.55% | 98.87% |
| German | 94.20% | 80.00% | 97.47% | 99.49% | 99.84% |
| English | 97.15% | 91.84% | 97.25% | 99.57% | 99.93% |
| French | 97.59% | 93.83% | 97.61% | 99.20% | 99.71% |
| Hindi | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% |
| Italian | 97.20% | 93.06% | 97.33% | 98.85% | 99.57% |
| Japanese | 94.92% | 88.95% | 95.14% | 97.74% | 97.85% |
| Korean | 99.83% | 99.44% | 99.98% | 99.97% | 99.94% |
| Dutch | 97.08% | 92.84% | 96.98% | 98.91% | 99.60% |
| Portuguese | 94.07% | 83.87% | 94.89% | 98.18% | 99.36% |
| Russian | 99.92% | 99.69% | 99.99% | 100.00% | 100.00% |
| Spanish | 92.12% | 76.36% | 93.78% | 98.65% | 99.70% |
| Swedish | 95.37% | 90.28% | 94.94% | 97.76% | 98.51% |
| Turkish | 95.51% | 88.24% | 98.11% | 98.38% | 97.33% |
| Vietnamese | 98.79% | 96.57% | 98.87% | 99.77% | 99.96% |
| AVG | 97.03% | 92.10% | 97.55% | 99.06% | 99.39% |