Some good samples generated chairs. (50epoch)
python generate_samples.py result/trained_models/Generator_50epoch.npz <save direcotry> <num to be generated>
pip install scipy scikit-image h5py
If you want to plot voxel, latest matplotlib is needed.
The 3D voxel / volumetric plot function is included only in unreleased version of matplotlib as of Oct 19, 2017
pip install git+https://github.com/matplotlib/matplotlib
I used ShapeNet-v2 dataset. Training script support .binbox
or .h5
extension.
Describe your dataset path to DATASET_PATH
in train.py
.
Just use .binvox
files in ShapeNet-v2.
Assuming that .h5
has { 'data': <np.array, shape (64, 64, 64)> }
. If you want to convert .binvox
into .h5
, use binvox_to_h5.py
script.
python train.py
python generate_samples.py <model_file> <save_dir> <num samples>
If you have .binvox
file, using simple-voxel-viewer is easy way.
Or visualize with matplotlib,
python visualize.py <binvox file or directory>