ratschlab / GP-VAE

TensorFlow implementation for the GP-VAE model described in https://arxiv.org/abs/1907.04155
MIT License
127 stars 27 forks source link

GP-VAE: Deep Probabilistic Time Series Imputation

Code for paper

Overview

Our approach utilizes Variational Autoencoders with Gaussian Process prior for time series imputation.

img

Dependencies

Run

  1. Clone or download this repo. cd yourself to it's root directory.
  2. Grab or build a working python enviromnent. Anaconda works fine.
  3. Install dependencies, using pip install -r requirements.txt
  4. Download data: bash data/load_{hmnist, sprites, physionet}.sh.
  5. Run command CUDA_VISIBLE_DEVICES=* python train.py --model_type {vae, hi-vae, gp-vae} --data_type {hmnist, sprites, physionet} --exp_name <your_name> ...

    To see all available flags run: python train.py --help

Reproducibility

We provide a set of hyperparameters used in our final runs. Some flags have common values for all datasets by default. For reproducibility of reported results run: