rclement / sqlite-ml

An SQLite extension for machine learning
Apache License 2.0
51 stars 2 forks source link
machine-learning mlops sql sqlite

sqlite-ml

An SQLite extension for machine learning

Train machine learning models and run predictions directly from your SQLite database. Inspired by PostgresML.

PyPI CI/CD Coverage Status License

Why?

Why bother running Machine Learning workloads in SQLite? Good question! Here are some answers:

Install

pip install sqlite-ml

Warning

Currently, the only way to load this extension is through Python SQLite3:

import sqlite3

from sqlite_ml.sqml import SQML

# get a `sqlite3.Connection` object with read-write permissions
conn = sqlite3.connect(":memory:")

# setup sqlite-ml extension
sqml = SQML()
sqml.setup_schema(conn)
sqml.register_functions(conn)

# execute sqlite-ml functions
conn.execute("SELECT sqml_python_version();").fetchone()[0]

We are working on making this extension a native SQLite extension, usable within any SQLite context, stay tuned!

In any case, the easiest ways to get started with sqlite-ml is to use either:

Tutorial

Using sqlite-ml you can start training Machine Learning models directly along your data, simply by using custom SQL functions! Let's get started by training a classifier against the famous "Iris Dataset" to predict flower types.

Loading the dataset

First let's load our data. For a real world project, your data may live with its own table or being accessed through an SQL view. For the purpose of this tutorial, we can use the sqml_load_dataset function to load standard Scikit-Learn datasets:

SELECT sqml_load_dataset('iris') AS dataset;

It will return the following data:

dataset
{"table": "dataset_iris", "feature_names": ["sepal length (cm)", "sepal width (cm)", "petal length (cm)", "petal width (cm)"], "target_names": ["setosa", "versicolor", "virginica"], "size": 150}

The Iris dataset is loaded into a table nammed dataset_iris, containing 150 examples, 4 features and 3 classes to be predicted.

Training a classifier

Now that our dataset is ready, let's train a first machine learning model to perform a classification task using the sqml_train function:

SELECT sqml_train(
  'Iris prediction',
  'classification',
  'logistic_regression',
  'dataset_iris',
  'target'
) AS training;

It will return the following data:

training
{"experiment_name": "Iris prediction", "prediction_type": "classification", "algorithm": "logistic_regression", "deployed": true, "score": 0.9473684210526315}

We have just trained our first machine learning model! The output data informs us that our model has been trained, yields a score of 0.94 and has been deployed.

Performing predictions

Now that we have trained our classifier, let's use it to make predictions!

Predict the target label for the first row of dataset_iris using the sqml_predict function:

SELECT
  dataset_iris.*,
  sqml_predict(
    'Iris prediction',
    json_object(
      'sepal length (cm)', [sepal length (cm)],
      'sepal width (cm)', [sepal width (cm)],
      'petal length (cm)', [petal length (cm)],
      'petal width (cm)', [petal width (cm)]
    )
  ) AS prediction
FROM dataset_iris
LIMIT 1;

This will output the following data:

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target prediction
5.1 3.5 1.4 0.2 0.0 0.0

Yay! Our prediction is matching the target label!

Let's see if we can find some predictions not matching the target label. To perform lots of predictions, we will use sqml_predict_batch which is more efficient than sqml_predict:

SELECT
  dataset_iris.*,
  batch.value AS prediction,
  dataset_iris.target = batch.value AS match
FROM
  dataset_iris
  JOIN json_each (
    (
      SELECT
        sqml_predict_batch(
          'Iris prediction',
          json_group_array(
            json_object(
              'sepal length (cm)', [sepal length (cm)],
              'sepal width (cm)', [sepal width (cm)],
              'petal length (cm)', [petal length (cm)],
              'petal width (cm)', [petal width (cm)]
            )
          )
        )
      FROM
        dataset_iris
    )
  ) batch ON (batch.rowid + 1) = dataset_iris.rowid
WHERE match = FALSE;

This will yield the following output data:

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target prediction match
5.9 3.2 4.8 1.8 1.0 2.0 0
6.7 3.0 5.0 1.7 1.0 2.0 0
6.0 2.7 5.1 1.6 1.0 2.0 0
4.9 2.5 4.5 1.7 2.0 1.0 0

Oh no! 4 predictions have not predicted the correct target label!

Let's see if we can train a better algorithm to enhance the prediction quality.

Training a new model

Let's use a Support Vector Machine algorithm, usually yielding better results compared to the more simplistic Logistic Regression:

SELECT sqml_train(
  'Iris prediction',
  'classification',
  'svc',
  'dataset_iris',
  'target'
) AS training;

This will yield the following data:

training
{"experiment_name": "Iris prediction", "prediction_type": "classification", "algorithm": "svc", "deployed": true, "score": 0.9736842105263158}

We can already see that the score of this new model is higher than the previous one and it has been deployed.

Let's try our new classifier on the same dataset:

SELECT
  dataset_iris.*,
  batch.value AS prediction,
  dataset_iris.target = batch.value AS match
FROM
  dataset_iris
  JOIN json_each (
    (
      SELECT
        sqml_predict_batch(
          'Iris prediction',
          json_group_array(
            json_object(
              'sepal length (cm)', [sepal length (cm)],
              'sepal width (cm)', [sepal width (cm)],
              'petal length (cm)', [petal length (cm)],
              'petal width (cm)', [petal width (cm)]
            )
          )
        )
      FROM
        dataset_iris
    )
  ) batch ON (batch.rowid + 1) = dataset_iris.rowid
WHERE match = FALSE;

This will lead the following results:

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target prediction match
5.9 3.2 4.8 1.8 1.0 2.0 0
6.7 3.0 5.0 1.7 1.0 2.0 0
6.0 2.7 5.1 1.6 1.0 2.0 0

Yay! We manage to predict one more target label with this new model!

Also note that we did not have to do anything to switch to the better model: exactly the same query is used to perform the prediction without having to specify anything about the new model! This is because new models are deployed automatically for the current experiment only if their score outperforms the score of the previously deployed model.

SQL functions

This plugin registers a few SQL functions to perform machine learning model training and predictions:

sqml_load_dataset(name, table)

sqml_train(experiment_name, prediction_type, algorithm, dataset, target, test_size, split_strategy):

sqml_predict(experiment_name, features)

sqml_predict_batch(experiment_name, features)

Development

To set up this plugin locally, first checkout the code. Then create a new virtual environment and the required dependencies:

poetry shell
poetry install

To run the QA suite:

black --check sqlite_ml tests
flake8 sqlite_ml tests
mypy sqlite_ml tests
pytest -v --cov=sqlite_ml --cov=tests --cov-branch --cov-report=term-missing tests

Inspiration

All the things on the internet that has inspired this project:

License

Licensed under Apache License, Version 2.0

Copyright (c) 2023 - present Romain Clement