reichlab / cladetime

Python interface for accessing Nextstrain SARS-CoV-2 sequence and clade data
https://cladetime.readthedocs.io
MIT License
0 stars 0 forks source link

User Guide

Cladetime is a wrapper around Nextstrain's GenBank-based SARS-CoV-2 genome sequence data and the metadata that describes it. Included with the metadata are the clades (variants) that each sequence is assigned to.

An advanced feature of Cladetime is the ability to perform custom clade assignments using past reference trees. For example, you can use the current set of sequence data and assign clades to it using the reference tree as it existed three months ago.

Cladetime is designed for use with US-based sequences from Homo sapiens.

Installation

Cladetime is written in Python and can be installed using pip:

pip install git+https://github.com/reichlab/cladetime.git

The CladeTime class

Most of Cladetime's features are accessible through the CladeTime class, which accepts two optional parameters:

[!IMPORTANT] Using tree_as_of for custom clade assignments is an advanced feature and requires Docker.

>>> from cladetime import CladeTime

# Create a CladeTime object that references the most recent available sequence
# data and metadata from Nextstrain
>>> ct = CladeTime()

Accessing sequence data

Each CladeTime object has a link to the full set of Nextstrain's SARS-Cov-2 genomic sequences as they existed on the sequence_as_of date. This data is in .fasta format, and most users won't need to download it directly.

>>> from cladetime import CladeTime
>>> ct = CladeTime()
>>> ct.url_sequence
https://nextstrain-data.s3.amazonaws.com/files/ncov/open/sequences.fasta.xz?versionId=4Sv2PbA1NoEd.V_LOOQSBPkqBpdoj7s_'

More interesting to most users will be the metadata that describes each sequence.

The sequence_metadata attribute of a CladeTime object is a Polars LazyFrame that points to a copy of Nextstrain's sequence metadata.

You can apply your own filters and transformations to the LazyFrame, but it's a good idea to start with the built-in filter_metadata function that removes non-US and non-human sequences from the metadata.

A collect() operation will return the filtered metadata as an in-memory Polars DataFrame.

>>> import polars as pl
>>> from cladetime import CladeTime, sequence

>>> ct = CladeTime()
>>> filtered_metadata = sequence.filter_metadata(ct.sequence_metadata)

# Alternately, specify a sequence collection date range to the filter
>>> filtered_metadata = sequence.filter_metadata(
>>>     ct.sequence_metadata,
>>>     collection_min_date = "2024-10-01",collection_max_date ="2024-10-31"
>>> )

>>> metadata_df = filtered_metadata.collect(streaming=True)

# Pandas users can export Polars dataframes
>>> pandas_df = filtered_sequence_metadata.to_pandas()

Past sequence data

Working with past sequence data and metadata is similar to the above examples. Just pass in a sequence_as_of date when creating a CladeTime object.

The clades returned as part of the metadata will reflect the reference tree in use when sequence metadata file was created.

>>> from cladetime import CladeTime

# Create a CladeTime object for any date after May, 2023
>>> ct = CladeTime(sequence_as_of="2024-10-15")

Custom clade assignments

You may want to assign sequence clades using a reference tree from a past date. This feature is helpful when creating "source of truth" data to evaluate models that predict clade proportions:

CladeTime's assign_clades method returns two Polars LazyFrames:

[!WARNING] In addition to requiring Docker, assign_clades is resource-intensive, because the process requires downloading a full copy of SARS-CoV-2 sequence data and then filtering it.

The filtered sequences are then run through Nextclade's CLI for clade assignment, another resource-intensive process. We recommend not assigning more than 30 days worth of sequence collections at a time.

>>> import polars as pl
>>> from cladetime import CladeTime, sequence

>>> ct = CladeTime(sequence_as_of="2024-11-15", tree_as_of="2024-09-01")
>>> filtered_metadata = sequence.filter_metadata(
>>>     ct.sequence_metadata,
>>>     collection_min_date = "2024-10-01",
>>>     collection_max_date ="2024-10-31"
>>> )
>>> clade_assignments = ct.assign_clades(filtered_metadata)

# Summarized clade assignments
>>> clade_assignments.summary.collect().head()
shape: (5, 6)
┌──────────┬────────────┬──────────────┬──────────────────┬─────────┬───────┐
│ location ┆ date       ┆ host         ┆ clade_nextstrain ┆ country ┆ count │
│ ---      ┆ ---        ┆ ---          ┆ ---              ┆ ---     ┆ ---   │
│ str      ┆ date       ┆ str          ┆ str              ┆ str     ┆ u32   │
╞══════════╪════════════╪══════════════╪══════════════════╪═════════╪═══════╡
│ IL       ┆ 2024-10-28 ┆ Homo sapiens ┆ 24C              ┆ USA     ┆ 1     │
│ IL       ┆ 2024-10-11 ┆ Homo sapiens ┆ 24C              ┆ USA     ┆ 5     │
│ NY       ┆ 2024-10-08 ┆ Homo sapiens ┆ 24B              ┆ USA     ┆ 2     │
│ AZ       ┆ 2024-10-15 ┆ Homo sapiens ┆ 24C              ┆ USA     ┆ 1     │
│ MN       ┆ 2024-10-06 ┆ Homo sapiens ┆ 24A              ┆ USA     ┆ 2     │
└──────────┴────────────┴──────────────┴──────────────────┴─────────┴───────┘

# Detailed clade assignments
>>> clade_assignments.detail.collect().select(
>>>     ["country", "location", "date", "strain", "clade_nextstrain"]
>>>    ).head (
shape: (5, 5)
┌─────────┬──────────┬────────────┬─────────────────────┬──────────────────┐
│ country ┆ location ┆ date       ┆ strain              ┆ clade_nextstrain │
│ ---     ┆ ---      ┆ ---        ┆ ---                 ┆ ---              │
│ str     ┆ str      ┆ date       ┆ str                 ┆ str              │
╞═════════╪══════════╪════════════╪═════════════════════╪══════════════════╡
│ USA     ┆ AZ       ┆ 2024-10-01 ┆ USA/2024CV1711/2024 ┆ 24C              │
│ USA     ┆ AZ       ┆ 2024-10-02 ┆ USA/2024CV1718/2024 ┆ 24C              │
│ USA     ┆ AZ       ┆ 2024-10-04 ┆ USA/2024CV1719/2024 ┆ 24C              │
│ USA     ┆ AZ       ┆ 2024-10-05 ┆ USA/2024CV1721/2024 ┆ 24C              │
│ USA     ┆ AZ       ┆ 2024-10-06 ┆ USA/2024CV1722/2024 ┆ recombinant      │
└─────────┴──────────┴────────────┴─────────────────────┴──────────────────┘
)

Reproducibility

CladeTime objects have an ncov_metadata property with information needed to reproduce the clade assignments in the object's sequence metadata.

In the example below, ncov_metadata shows that the Nextclade dataset used for clade assignment on 2024-09-22 was 2024-07-17--12-57-03Z.

Each version of a SARS-CoV-2 Nextclade dataset contains a reference tree that can be used as an input for clade assignments.

>>> from cladetime import CladeTime
>>> ct = CladeTime(sequence_as_of='2024-09-22')

>>> ct.ncov_metadata.get('nextclade_dataset_name')
'SARS-CoV-2'
>>> ct.ncov_metadata.get('nextclade_dataset_version')
'2024-07-17--12-57-03Z'

Access to historical copies of ncov_metadata is what allows Cladetime to access past reference trees for custom clade assignments. Cladetime retrieves a separate set of ncov_metadata for the tree_as_of date and uses it to pass the correct reference tree to the assign_clades method.

Command line interface (CLI)

Cladetime will also include a command line interface (CLI) for generating custom clade assignments without needed to write Python code.

The CLI is not yet implemented, but it will look something like this:

assign_clades --sequence-as-of 2024-10-15 --tree-as-of 2024-09-01 --min-collection-date 2024-09-01 --max-collection-date 2024-09-30 --output-file clade_assignments.csv