NativeDump allows to dump the lsass process using only NTAPIs generating a Minidump file with only the streams needed to be parsed by tools like Mimikatz or Pypykatz (SystemInfo, ModuleList and Memory64List Streams).
The program has one optional argument for the output file, the default file name is "proc_\<PID>.dmp":
NativeDump.exe [DUMP_FILE]
The tool has been tested against Windows 10 and 11 devices with the most common security solutions (Microsoft Defender for Endpoints, Crowdstrike...) and is for now undetected. However, it does not work if PPL is enabled or PEB structure is not readable. Update: Now it is possible to execute the programs without reading the PEB, check the peb-unreadable branch :)
Some benefits of this technique are:
You can find the project in different flavours (or languages):
main - .NET basic implementation (this branch)
python-flavour - Python implementation with 3 ntdll.dll overwrite methods + Exfiltrate to remote machine
golang-flavour - Golang implementation with 3 ntdll.dll overwrite methods + Exfiltrate to remote machine
c-flavour - C/C++ implementation with 3 ntdll.dll overwrite methods
bof-flavour - BOF file with 3 ntdll.dll overwrite methods
rust-flavour - Rust implementation by @safedv
Other interesting branches using .NET:
remote - Exfiltrate to remote machine + 3 ntdll.dll overwrite methods + Dynamic function resolution + String AES encryption + XOR-encoding Minidump content
all-modules - Get the information for all modules (not only lsasrv.dll)
peb-unreadable - Implementation without reading lsass' PEB structure + 3 ntdll.dll overwrite methods
After reading Minidump undocumented structures, its structure can be summed up to:
I created a parsing tool which can be helpful: MinidumpParser. We will focus on creating a valid file with only the necessary values for the header, stream directory and the only 3 streams needed for a Minidump file to be parsed by Mimikatz/Pypykatz: SystemInfo, ModuleList and Memory64List Streams.
The header is a 32-bytes structure which can be defined in C# as:
public struct MinidumpHeader
{
public uint Signature;
public ushort Version;
public ushort ImplementationVersion;
public ushort NumberOfStreams;
public uint StreamDirectoryRva;
public uint CheckSum;
public IntPtr TimeDateStamp;
}
The required values are:
Each entry in the Stream Directory is a 12-bytes structure so having 3 entries the size is 36 bytes. The C# struct definition for an entry is:
public struct MinidumpStreamDirectoryEntry
{
public uint StreamType;
public uint Size;
public uint Location;
}
The field "StreamType" represents the type of stream as an integer or ID, some of the most relevant are:
ID | Stream Type |
---|---|
0x00 | UnusedStream |
0x01 | ReservedStream0 |
0x02 | ReservedStream1 |
0x03 | ThreadListStream |
0x04 | ModuleListStream |
0x05 | MemoryListStream |
0x06 | ExceptionStream |
0x07 | SystemInfoStream |
0x08 | ThreadExListStream |
0x09 | Memory64ListStream |
0x0A | CommentStreamA |
0x0B | CommentStreamW |
0x0C | HandleDataStream |
0x0D | FunctionTableStream |
0x0E | UnloadedModuleListStream |
0x0F | MiscInfoStream |
0x10 | MemoryInfoListStream |
0x11 | ThreadInfoListStream |
0x12 | HandleOperationListStream |
0x13 | TokenStream |
0x16 | HandleOperationListStream |
First stream is a SystemInformation Stream, with ID 7. The size is 56 bytes and will be located at offset 68 (0x44), after the Stream Directory. Its C# definition is:
public struct SystemInformationStream
{
public ushort ProcessorArchitecture;
public ushort ProcessorLevel;
public ushort ProcessorRevision;
public byte NumberOfProcessors;
public byte ProductType;
public uint MajorVersion;
public uint MinorVersion;
public uint BuildNumber;
public uint PlatformId;
public uint UnknownField1;
public uint UnknownField2;
public IntPtr ProcessorFeatures;
public IntPtr ProcessorFeatures2;
public uint UnknownField3;
public ushort UnknownField14;
public byte UnknownField15;
}
The required values are:
Second stream is a ModuleList stream, with ID 4. It is located at offset 124 (0x7C) after the SystemInformation stream and it will also have a fixed size, of 112 bytes, since it will have the entry of a single module, the only one needed for the parse to be correct: "lsasrv.dll".
The typical structure for this stream is a 4-byte value containing the number of entries followed by 108-byte entries for each module:
public struct ModuleListStream
{
public uint NumberOfModules;
public ModuleInfo[] Modules;
}
As there is only one, it gets simplified to:
public struct ModuleListStream
{
public uint NumberOfModules;
public IntPtr BaseAddress;
public uint Size;
public uint UnknownField1;
public uint Timestamp;
public uint PointerName;
public IntPtr UnknownField2;
public IntPtr UnknownField3;
public IntPtr UnknownField4;
public IntPtr UnknownField5;
public IntPtr UnknownField6;
public IntPtr UnknownField7;
public IntPtr UnknownField8;
public IntPtr UnknownField9;
public IntPtr UnknownField10;
public IntPtr UnknownField11;
}
The required values are:
Third stream is a Memory64List stream, with ID 9. It is located at offset 298 (0x12A), after the ModuleList stream and the Unicode string, and its size depends on the number of modules.
public struct Memory64ListStream
{
public ulong NumberOfEntries;
public uint MemoryRegionsBaseAddress;
public Memory64Info[] MemoryInfoEntries;
}
Each module entry is a 16-bytes structure:
public struct Memory64Info
{
public IntPtr Address;
public IntPtr Size;
}
The required values are:
There are pre-requisites to loop the memory regions of the lsass.exe process which can be solved using only NTAPIs:
With this it is possible to traverse process memory by calling:
After previous steps we have all that is necessary to create the Minidump file. We can create a file locally or send the bytes to a remote machine, with the possibility of encoding or encrypting the bytes before. Some of these possibilities are coded in the delegates branch, where the file created locally can be encoded with XOR, and in the remote branch, where the file can be encoded with XOR before being sent to a remote machine.
If you find this project helpful or interesting, please consider giving it a star 🌟 on GitHub! :)