rnanclares / forest-fires

3 stars 2 forks source link

Wildfire Risk/Danger model

Build a model to estimate the probability of wildfires occuring, using remote sensed data (data from satellite sensors).

Training data

Historical wildfire record - (FireCCI51: MODIS Fire_cci Burned Area Pixel product, version 5.1)

Environmental Variables

Previous month

Previous year (constant throughout the year)

Training data preparation

Data obtained from scripts 0 to 4 can be found here gs://geo-2021/digeo/Incendios/datos_scripts.zip (please download and don't modify the folder structure)

Inference

### Calculates variables for April, which will we used to the inference for the month of May  
iniDate = '2021-04-01'
endDate = '2021-04-30'
mes_eval <- 5 # Month number

Note

In the last month (May 2021) precipitation (CHIRPS) and soil moisture (SMOS) are delayed in its ingestion into GEE so we instead used an average value obtained using GEE.

var geometry = ee.Geometry.Rectangle([-105.70671, 18.91105, -101.45436, 22.75942])
var m = 5  //##
var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/DAILY')
  .select('precipitation')
  .filter(ee.Filter.calendarRange(m, m, 'month'))
  .mean()

var smos = ee.ImageCollection('NASA_USDA/HSL/soil_moisture')
.select('ssm', 'susm')
.filter(ee.Filter.calendarRange(m, m, 'month'))
.mean()

Export.image.toDrive({
  image: chirps,
  description: 'precipitacion',
  scale: 250,
  crs: 'EPSG:32613',
  folder: 'incendios_2021' , 
  region: geometry
});

Export.image.toDrive({
  image: smos,
  description: 'smos',
  scale: 250,
  crs: 'EPSG:32613',
  folder: 'incendios_2021' , 
  region: geometry
});