roatienza / deep-text-recognition-benchmark

PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)
Apache License 2.0
293 stars 59 forks source link
ocr str vision-transformer vitstr

Vision Transformer for Fast and Efficient Scene Text Recognition

ViTSTR is a simple single-stage model that uses a pre-trained Vision Transformer (ViT) to perform Scene Text Recognition (ViTSTR). It has a comparable accuracy with state-of-the-art STR models although it uses significantly less number of parameters and FLOPS. ViTSTR is also fast due to the parallel computation inherent to ViT architecture.

Paper

ViTSTR Model

ViTSTR is built using a fork of CLOVA AI Deep Text Recognition Benchmark. Below we document how to train and evaluate ViTSTR-Tiny and ViTSTR-small.

Install requirements

pip3 install -r requirements.txt

Inference

python3 infer.py --image demo_image/demo_1.png --model https://github.com/roatienza/deep-text-recognition-benchmark/releases/download/v0.1.0/vitstr_small_patch16_jit.pt

Replace --image by the path to your target image file.

After the model has been downloaded, you can perform inference using the local checkpoint:

python3 infer.py --image demo_image/demo_2.jpg --model vitstr_small_patch16_jit.pt

Quantized Model on x86

python3 infer.py --image demo_image/demo_1.png --model  https://github.com/roatienza/deep-text-recognition-benchmark/releases/download/v0.1.0/vitstr_small_patch16_quant.pt --quantized

Quantized Model on Raspberry Pi 4

python3 infer.py --image demo_image/demo_1.png --model  https://github.com/roatienza/deep-text-recognition-benchmark/releases/download/v0.1.0/vitstr_small_patch16_quant.pt --quantized --rpi

Inference Time on GPU using JIT

python3 infer.py --model https://github.com/roatienza/deep-text-recognition-benchmark/releases/download/v0.1.0/vitstr_small_patch16_jit.pt --time --gpu
Average inference time per image: 2.57e-03 sec (Quadro RTX 6000)
Average inference time per image: 4.53e-03 sec (V100)

Inference Time on CPU using JIT

python3 infer.py --model https://github.com/roatienza/deep-text-recognition-benchmark/releases/download/v0.1.0/vitstr_small_patch16_jit.pt --time
Average inference time per image: 2.80e-02 sec (AMD Ryzen Threadripper 3970X 32-Core)
Average inference time per image: 2.70e-02 sec (Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz)

Inference Time on RPi 4

python3 infer.py --model https://github.com/roatienza/deep-text-recognition-benchmark/releases/download/v0.1.0/vitstr_small_patch16_quant.pt  --time --rpi --quantized
Average inference time per image: 3.69e-01 sec (Quantized)
python3 infer.py --model https://github.com/roatienza/deep-text-recognition-benchmark/releases/download/v0.1.0/vitstr_small_patch16_jit.pt  --time --rpi
Average inference time per image: 4.64e-01 sec (JIT)

Sample Results:

Input Image Output Prediction
demo_1 Available
demo_2 SHAKESHACK
demo_3 Londen
demo_4 Greenstead

Dataset

Download lmdb dataset from CLOVA AI Deep Text Recognition Benchmark.

Quick validation using a pre-trained model

ViTSTR-Small

CUDA_VISIBLE_DEVICES=0 python3 test.py --eval_data data_lmdb_release/evaluation \
--benchmark_all_eval --Transformation None --FeatureExtraction None \
--SequenceModeling None --Prediction None --Transformer \
--sensitive --data_filtering_off  --imgH 224 --imgW 224 \
--TransformerModel=vitstr_small_patch16_224 \ 
--saved_model https://github.com/roatienza/deep-text-recognition-benchmark/releases/download/v0.1.0/vitstr_small_patch16_224_aug.pth

Available model weights:

Tiny Small Base
vitstr_tiny_patch16_224 vitstr_small_patch16_224 vitstr_base_patch16_224
ViTSTR-Tiny ViTSTR-Small ViTSTR-Base
ViTSTR-Tiny+Aug ViTSTR-Small+Aug ViTSTR-Base+Aug

Benchmarks (Top 1% accuracy)

Model IIIT SVT IC03 IC03 IC13 IC13 IC15 IC15 SVTP CT Acc Std
3000 647 860 867 857 1015 1811 2077 645 288 % %
TRBA (Baseline) 87.7 87.4 94.5 94.2 93.4 92.1 77.3 71.6 78.1 75.5 84.3 0.1
ViTSTR-Tiny 83.7 83.2 92.8 92.5 90.8 89.3 72.0 66.4 74.5 65.0 80.3 0.2
ViTSTR-Tiny+Aug 85.1 85.0 93.4 93.2 90.9 89.7 74.7 68.9 78.3 74.2 82.1 0.1
ViTSTR-Small 85.6 85.3 93.9 93.6 91.7 90.6 75.3 69.5 78.1 71.3 82.6 0.3
ViTSTR-Small+Aug 86.6 87.3 94.2 94.2 92.1 91.2 77.9 71.7 81.4 77.9 84.2 0.1
ViTSTR-Base 86.9 87.2 93.8 93.4 92.1 91.3 76.8 71.1 80.0 74.7 83.7 0.1
ViTSTR-Base+Aug 88.4 87.7 94.7 94.3 93.2 92.4 78.5 72.6 81.8 81.3 85.2 0.1

Comparison with other STR models

Accuracy vs Number of Parameters

Acc vs Parameters

Accuracy vs Speed (2080Ti GPU)

Acc vs Speed

Accuracy vs FLOPS

Acc vs FLOPS

Train

ViTSTR-Tiny without data augmentation

RANDOM=$$

CUDA_VISIBLE_DEVICES=0 python3 train.py --train_data data_lmdb_release/training \
--valid_data data_lmdb_release/evaluation --select_data MJ-ST \
--batch_ratio 0.5-0.5 --Transformation None --FeatureExtraction None \ 
--SequenceModeling None --Prediction None --Transformer \
--TransformerModel=vitstr_tiny_patch16_224 --imgH 224 --imgW 224 \
--manualSeed=$RANDOM  --sensitive

Multi-GPU training

ViTSTR-Small on a 4-GPU machine

It is recommended to train larger networks like ViTSTR-Small and ViTSTR-Base on a multi-GPU machine. To keep a fixed batch size at 192, use the --batch_size option. Divide 192 by the number of GPUs. For example, to train ViTSTR-Small on a 4-GPU machine, this would be --batch_size=48.

python3 train.py --train_data data_lmdb_release/training \
--valid_data data_lmdb_release/evaluation --select_data MJ-ST \
--batch_ratio 0.5-0.5 --Transformation None --FeatureExtraction None \
--SequenceModeling None --Prediction None --Transformer \
--TransformerModel=vitstr_small_patch16_224 --imgH 224 --imgW 224 \
--manualSeed=$RANDOM --sensitive --batch_size=48

Data augmentation

ViTSTR-Tiny using rand augment

It is recommended to use more workers (eg from default of 4, use 32 instead) since the data augmentation process is CPU intensive. In determining the number of workers, a simple rule of thumb to follow is it can be set to a value between 25% to 50% of the total number of CPU cores. For example, for a system with 64 CPU cores, the number of workers can be set to 32 to use 50% of all cores. For multi-GPU systems, the number of workers must be divided by the number of GPUs. For example, for 32 workers in a 4-GPU system, --workers=8. For convenience, simply use --workers=-1, 50% of all cores will be used. Lastly, instead of using a constant learning rate, a cosine scheduler improves the performance of the model during training.

Below is a sample configuration for a 4-GPU system using batch size of 192.

python3 train.py --train_data data_lmdb_release/training \
--valid_data data_lmdb_release/evaluation --select_data MJ-ST \
--batch_ratio 0.5-0.5 --Transformation None --FeatureExtraction None \
--SequenceModeling None --Prediction None --Transformer \
--TransformerModel=vitstr_tiny_patch16_224 --imgH 224 --imgW 224 \
--manualSeed=$RANDOM  --sensitive \
--batch_size=48 --isrand_aug --workers=-1 --scheduler

Test

ViTSTR-Tiny. Find the path to best_accuracy.pth checkpoint file (usually in saved_model folder).

CUDA_VISIBLE_DEVICES=0 python3 test.py --eval_data data_lmdb_release/evaluation \
--benchmark_all_eval --Transformation None --FeatureExtraction None \
--SequenceModeling None --Prediction None --Transformer \
--TransformerModel=vitstr_tiny_patch16_224 \
--sensitive --data_filtering_off  --imgH 224 --imgW 224 \
--saved_model <path_to/best_accuracy.pth>

Citation

If you find this work useful, please cite:

@inproceedings{atienza2021vision,
  title={Vision transformer for fast and efficient scene text recognition},
  author={Atienza, Rowel},
  booktitle={International Conference on Document Analysis and Recognition},
  pages={319--334},
  year={2021},
  organization={Springer}
}