roomylee / cnn-relation-extraction

Tensorflow Implementation of Convolutional Neural Network for Relation Extraction (COLING 2014, NAACL 2015)
http://www.aclweb.org/anthology/W15-1506
MIT License
220 stars 62 forks source link
cnn-text-classification convolutional-neural-networks relation-extraction semeval-2010 tensorflow

Convolutional Neural Networks for Relation Extraction

Tensorflow Implementation of Deep Learning Approach for Relation Extraction Challenge(SemEval-2010 Task #8: Multi-Way Classification of Semantic Relations Between Pairs of Nominals) via Convolutional Neural Networks.

Usage

Train

Display help message:
$ python train.py --help
Train Example:
$ python train.py --embedding_path "GoogleNews-vectors-negative300.bin"

Evaluation

Evaluation Example:
$ python eval.py --checkpoint_dir "runs/1523902663/checkpoints/"

Results

Officiail Performance

performance

Learning Curve (Accuracy)

acc

Learning Curve (Loss)

loss

SemEval-2010 Task #8

The Inventory of Semantic Relations

  1. Cause-Effect(CE): An event or object leads to an effect(those cancers were caused by radiation exposures)
  2. Instrument-Agency(IA): An agent uses an instrument(phone operator)
  3. Product-Producer(PP): A producer causes a product to exist (a factory manufactures suits)
  4. Content-Container(CC): An object is physically stored in a delineated area of space (a bottle full of honey was weighed) Hendrickx, Kim, Kozareva, Nakov, O S´ eaghdha, Pad ´ o,´ Pennacchiotti, Romano, Szpakowicz Task Overview Data Creation Competition Results and Discussion The Inventory of Semantic Relations (III)
  5. Entity-Origin(EO): An entity is coming or is derived from an origin, e.g., position or material (letters from foreign countries)
  6. Entity-Destination(ED): An entity is moving towards a destination (the boy went to bed)
  7. Component-Whole(CW): An object is a component of a larger whole (my apartment has a large kitchen)
  8. Member-Collection(MC): A member forms a nonfunctional part of a collection (there are many trees in the forest)
  9. Message-Topic(CT): An act of communication, written or spoken, is about a topic (the lecture was about semantics)
  10. OTHER: If none of the above nine relations appears to be suitable.

Distribution for Dataset

Reference