ropensci / software-review

rOpenSci Software Peer Review.
292 stars 104 forks source link

galamm: Generalized Additive Latent and Mixed Models #615

Open osorensen opened 1 year ago

osorensen commented 1 year ago

Submitting Author Name: Øystein Sørensen Submitting Author Github Handle: !--author1-->@osorensen<!--end-author1-- Repository: https://github.com/LCBC-UiO/galamm Version submitted: 0.1.1.9000 Submission type: Stats Badge grade: gold Editor: !--editor-->@noamross<!--end-editor-- Reviewers: @nicholasjclark, @eric-pedersen

Due date for @nicholasjclark: 2024-11-10 Due date for @eric-pedersen: 2024-11-23

Archive: TBD Version accepted: TBD Language: en

Package: galamm
Title: Generalized Additive Latent and Mixed Models
Version: 0.1.1.9000
Authors@R: c(
    person(given = "Øystein",
           family = "Sørensen",
           role = c("aut", "cre"),
           email = "oystein.sorensen@psykologi.uio.no",
           comment = c(ORCID = "0000-0003-0724-3542")),
    person(given = "Douglas", family = "Bates", role = "ctb"),       
    person(given = "Ben", family = "Bolker", role = "ctb"),
    person(given = "Martin", family = "Maechler", role = "ctb"),
    person(given = "Allan", family = "Leal", role = "ctb"),
    person(given = "Fabian", family = "Scheipl", role = "ctb"),
    person(given = "Steven", family = "Walker", role = "ctb"),
    person(given = "Simon", family = "Wood", role = "ctb")
           )
Description: Estimates generalized additive latent and
    mixed models using maximum marginal likelihood, 
    as defined in Sorensen et al. (2023) 
    <doi:10.1007/s11336-023-09910-z>, which is an extension of Rabe-Hesketh and
    Skrondal (2004)'s unifying framework for multilevel latent variable 
    modeling <doi:10.1007/BF02295939>. Efficient computation is done using sparse 
    matrix methods, Laplace approximation, and automatic differentiation. The 
    framework includes generalized multilevel models with heteroscedastic 
    residuals, mixed response types, factor loadings, smoothing splines, 
    crossed random effects, and combinations thereof. Syntax for model 
    formulation is close to 'lme4' (Bates et al. (2015) 
    <doi:10.18637/jss.v067.i01>) and 'PLmixed' (Rockwood and Jeon (2019) 
    <doi:10.1080/00273171.2018.1516541>).
License: GPL (>= 3)
URL: https://github.com/LCBC-UiO/galamm, https://lcbc-uio.github.io/galamm/
BugReports: https://github.com/LCBC-UiO/galamm/issues
Encoding: UTF-8
Imports: 
    lme4,
    Matrix,
    memoise,
    methods,
    mgcv,
    nlme,
    Rcpp,
    Rdpack,
    stats
Depends:
    R (>= 3.5.0)
LinkingTo:
    Rcpp,
    RcppEigen
LazyData: true
Roxygen: list(markdown = TRUE, roclets = c ("namespace", "rd", "srr::srr_stats_roclet"))
RoxygenNote: 7.2.3
Suggests:
    covr,
    gamm4,
    knitr,
    PLmixed,
    rmarkdown,
    testthat (>= 3.0.0)
Config/testthat/edition: 3
VignetteBuilder: knitr, rmarkdown
RdMacros: Rdpack
NeedsCompilation: yes
SystemRequirements: C++17

Scope

Pre-submission Inquiry

General Information

This is the first implementation of the algorithm developed in Sørensen, Fjell, and Walhovd (2023).

Badging

Technical checks

Confirm each of the following by checking the box.

This package:

Publication options

Code of conduct