Knowledge Graphs Generation from unstructured text
$ python3 common/stanfordcorenlp/server.py
(syntax: python3 common/stanfordcorenlp/server.py -h)
$ python3 pipeline.py text.txt -p senna -s -k cso -ng
(syntax: python3 pipeline.py -h)
$ cd preprocessor
$ python3 preprocessor.py text.txt
(syntax: python3 preprocessor.py -h)
$ cd facts_extractor
$ python3 extractor.py text_preprocessed.txt -p senna -s
(syntax: python3 extractor.py -h)
$ cd kb_linker
$ python3 linker.py text_preprocessed.txt -k cso
(syntax: python3 linker.py -h)
$ cd rdf_maker
$ python3 maker.py text_preprocessed_triples.txt -l text_preprocessed_links.txt
(syntax: python3 maker.py -h)
$ cd graph_generator
$ python3 generator.py text_preprocessed_kg.ttl
(syntax: python3 generator.py -h)
$python3 common/stanfordcorenlp/server.py -k
(or simply Ctrl+C in its shell)
Rossanez, A.; Dos Reis, J. C.; Torres, R. S.; De Ribaupierre, H. KGen: A Knowledge Graph Generator from Biomedical Scientific Literature. BMC Medical Informatics and Decision Making, v. 20, p. 314, 2020.
Rossanez, A.; Dos Reis, J. C. Generating Knowledge Graphs from Scientific Literature of Degenerative Diseases. In Proceedings of the 4th International Workshop on Semantics-Powered Data Mining and Analytics (SEPDA 2019), co-located with the 18th International Semantic Web Conference (ISWC 2019). Aachen: CEUR Workshop Proceedings, 2019. v. 2427. p. 12-23.