abb_motion_program_exec
provides a simple way to download and run a sequence of
MoveAbsJ
, MoveJ
, MoveL
, MoveC
, and WaitTime
commands on
an ABB IRC5 robot controller. This program is intended to be a proof of
concept for more sophisticated controller interfaces. Multi-move control of two robots is also
supported. Externally Guided Motion (EGM) is also supported for joint target, pose target, and path correction modes.
Documentation can be found at: https://abb-motion-program-exec.readthedocs.io/
abb-motion-program-exec
is avaliable on PyPi.
pip install abb-motion-program-exec
Begin by installing the software for the robot controller. This software can be installed manually by copying files to the robot controller and importing configuration files.
This contains the robot-side code, that reads
and executes the contents of motion_program.bin
. motion_program.bin
contains the sequence of instructions to run, encoded in binary
format for fast interpretation.
Only one instance of a Robot Studio virtual controller can be run at a time. Only instances of Robot Studio can be run at a time running a single virtual controller. This is due to the controller using TCP port 80 on the local computer to accept REST commands from Python. If more than one controller is started, TCP port 80 will already be in use and can cause unpredictable behavior. Restart the computer if connections cannot be made from Python to the controller. Multiple real robots can be used concurrently since they will each have a unique IP address to bind port 80.
Older versions of Python are not supported by the currently available protobuf package. Use the apt version instead.
sudo apt install python3-virtualenv python3-protobuf python3-numpy python3-wheel python3-setuptools
python3 -m pip install --user abb-motion-program-exec
The robot must be in "Auto" mode for this driver to operate. A non-descriptive error code will be returned if attempting to execute a motion program in manual mode.
Once the abb_motion_program_exec.mod
has been loaded on the controller,
the Python module can be used to command motion sequences. The class
MotionProgram
contains is used to build the sequence of motions. It has
the following commands of interest:
MoveAbsJ(to_joint_pos: jointtarget, speed: speeddata, zone: zonedata)
- Move the
robot to a specified joint waypoint.MoveJ(to_point: robtarget, speed: speeddata, zone: zonedata)
- Move the
robot to the specified Cartesian target using joint interpolation.MoveL(to_point: robtarget, speed: speeddata, zone: zonedata)
- Move
the robot to the specified Cartesian target using linear interpolation.MoveC(cir_point: robtarget, to_point: robtarget, speed: speeddata, zone: zonedata)
-
Move the robot to the specified Cartesian target circularly using an intermediate
waypoint.WaitTime(t: float)
- Wait a specified time in seconds.Calling each of these functions adds the command to the sequence.
The constructor for MotionProgram
optionally takes a tool
parameter.
This parameter is expected to be type tooldata
and will be passed
to each of the move commands. Because the tool is expected to be a
PERS
type by the ABB software, it can't be modified for each
motion command without a significant performance penalty.
my_motion_program = MotionProgram(tool=my_tool)
The following types are defined as subclasses of NamedTuple
:
class speeddata(NamedTuple):
v_tcp: float
v_ori: float
v_leax: float
v_reax: float
class zonedata(NamedTuple):
finep: bool
pzone_tcp: float
pzone_ori: float
pzone_eax: float
zone_ori: float
zone_leax: float
zone_reax: float
class jointtarget(NamedTuple):
robax: np.ndarray # shape=(6,)
extax: np.ndarray # shape=(6,)
class pose(NamedTuple):
trans: np.ndarray # [x,y,z]
rot: np.ndarray # [qw,qx,qy,qz]
class confdata(NamedTuple):
cf1: float
cf4: float
cf6: float
cfx: float
class robtarget(NamedTuple):
trans: np.ndarray # [x,y,z]
rot: np.ndarray # [qw,qx,qy,qz]
robconf: confdata #
extax: np.ndarray # shape=(6,)
class loaddata(NamedTuple):
mass: float
cog: np.ndarray # shape=(3,)
aom: np.ndarray # shape=(4,)
ix: float
iy: float
iz: float
class tooldata(NamedTuple):
robhold: bool
tframe: pose
tload : loaddata
See the ABB Robotics manual "Technical reference manual RAPID
Instructions, Functions and Data types" for more details on these data
types. Note that pos
, orient
, robjoint
, and extjoint
are
implemented using numpy arrays or lists.
The following standard speeddata
are available in the module:
v5
, v10
, v20
, v30
, v40
, v50
, v60
, v80
, v100
,
v200
, v300
, v400
, v500
, v600
, v800
, v1000
, v1500
,
v2000
, v2500
, v3000
, v4000
, v5000
, v6000
, v7000
,
vmax
.
The following standard zonedata
are available in the module:
fine
, z0
, z1
, z5
, z10
, z15
, z20
, z30
, z40
,
z50
, z60
, z80
, z100
, z150
, z200
.
The following tooldata
are available in the module: tool0
Once the program is complete, it can be executed on the robot using
MotionProgramExecClient
. The constructor is by default:
mp_client = MotionProgramClient(base_url='http://127.0.0.1:80', username='Default User', password='robotics')
The base_url
, username
, and password
should be adjusted to the actual robot. The
client using ABB Web Services. base_url
must be set to the IP address of the
robot, or using localhost
if using the simulator.
Once the client is constructed, it can be used to execute the program:
log_results = mp_client.execute_motion_program(mp)
log_results
is a tuple containing the results of the motion:
class MotionProgramResultLog(NamedTuple):
timestamp: str
column_headers: List[str]
data: np.array
timestamp
is a string timestamp for the data. column_headers
is a list of strings containing the labels of the
columns of data. data
contains a float32 numpy 2D array of the data, with each row being a sample.
For a single robot, the data has the following columns:
timestamp
- The time of the row. This is time from the startup of the logger task in seconds.
Subtract the initial time from all samples to get a 0 start time for the program.cmd_num
- The currently executing command number. Use get_program_rapid()
to print out
the program with command numbers annotated.J1
- Joint 1 position in degreesJ2
- Joint 2 position in degreesJ3
- Joint 3 position in degreesJ4
- Joint 4 position in degreesJ5
- Joint 5 position in degreesJ6
- Joint 6 position in degreesThe field column_headers
contains a list of the column headers.
The abb_motion_program_exec
module is available on PyPI and can be installed using pip:
pip install abb_motion_program_exec
For development, use of a virtualenv
is recommended. Use editable install with the virtualenv:
pip install -e .
See egm.md for instructions on using EGM.
import abb_motion_program_exec as abb
j1 = abb.jointtarget([10,20,30,40,50,60],[0]*6)
j2 = abb.jointtarget([-10,15,35,10,95,-95],[0]*6)
j3 = abb.jointtarget([15,-5,25,83,-84,85],[0]*6)
my_tool = abb.tooldata(True,abb.pose([0,0,0.1],[1,0,0,0]),abb.loaddata(0.001,[0,0,0.001],[1,0,0,0],0,0,0))
mp = abb.MotionProgram(tool=my_tool)
mp.MoveAbsJ(j1,abb.v1000,abb.fine)
mp.MoveAbsJ(j2,abb.v5000,abb.fine)
mp.MoveAbsJ(j3,abb.v500,abb.fine)
mp.MoveAbsJ(j2,abb.v5000,abb.z50)
mp.MoveAbsJ(j3,abb.v500,abb.z200)
mp.MoveAbsJ(j2,abb.v5000,abb.fine)
mp.WaitTime(1)
r1 = abb.robtarget([350., -100., 600.], [ 0.0868241, -0.0868241, 0.9924039, 0.0075961 ], abb.confdata(-1,0,-1,0),[0]*6)
r2 = abb.robtarget([370., 120., 620. ], [ 0.0868241, 0.0868241, 0.9924039, -0.0075961], abb.confdata(0,-1,0,0),[0]*6)
r3 = abb.robtarget([400., -200., 500.], [0.7071068, 0., 0.7071068, 0.], abb.confdata( -1., -3., 2., 0.),[0]*6)
r4 = abb.robtarget([400., 0., 580.], [0.7071068, 0., 0.7071068, 0.], abb.confdata(0., -3., 2., 0.), [0]*6)
r5 = abb.robtarget([400., 200., 500.], [0.7071068, 0., 0.7071068, 0.], abb.confdata(0., -2., 1., 0.),[0]*6)
mp.MoveJ(r1,abb.v500,abb.fine)
mp.MoveJ(r2,abb.v400,abb.fine)
mp.MoveJ(r1,abb.v500,abb.z100)
mp.MoveJ(r2,abb.v400,abb.z100)
mp.MoveJ(r1,abb.v500,abb.fine)
mp.WaitTime(1.5)
mp.MoveJ(r3,abb.v5000,abb.fine)
mp.MoveL(r4,abb.v200,abb.fine)
mp.MoveL(r3,abb.v200,abb.fine)
mp.MoveL(r4,abb.v1000,abb.z100)
mp.MoveL(r3,abb.v1000,abb.z100)
mp.MoveL(r4,abb.v1000,abb.fine)
mp.WaitTime(2.5)
mp.MoveJ(r3,abb.v5000,abb.fine)
mp.MoveC(r4,r5,abb.v200,abb.z10)
mp.MoveC(r4,r3,abb.v50,abb.fine)
# Print out RAPID module of motion program for debugging
print(mp.get_program_rapid())
# Execute the motion program on the robot
# Change base_url to the robot IP address
client = abb.MotionProgramExecClient(base_url="http://127.0.0.1:80")
log_results = client.execute_motion_program(mp)
# log_results.data is a numpy array
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots()
lns1 = ax1.plot(log_results.data[:,0], log_results.data[:,2:])
ax1.set_xlabel("Time (s)")
ax1.set_ylabel("Joint angle (deg)")
ax2 = ax1.twinx()
lns2 = ax2.plot(log_results.data[:,0], log_results.data[:,1], '-k')
ax2.set_ylabel("Command number")
ax2.set_yticks(range(-1,int(max(log_results.data[:,1]))+1))
ax1.legend(lns1 + lns2, log_results.column_headers[2:] + ["cmdnum"])
ax1.set_title("Joint motion")
plt.show()
Two robots can be controlled using ABB Multi-Move. See robot_multimove_setup_manual.md for setup instructions.
They must have exactly the same number of motion commands. The commands
are passed with the \ID
parameter corresponding to the command number. SyncMoveOn
is activated
to cause the robots to move in sync. The execute_multimove_motion_program()
function
of MotionProgramExecClient
is used to send multi-move programs to the robot.
import abb_motion_program_exec as abb
# Fill motion program for T_ROB1
t1 = abb.robtarget([575,-200,1280],[0,-.707,0,.707],abb.confdata(0,0,-1,1),[0]*6)
t2 = abb.robtarget([575,200,1480],[0,-.707,0,.707],abb.confdata(-1,-1,0,1),[0]*6)
t3 = abb.robtarget([575,0,1280],[0,-.707,0,.707],abb.confdata(-1,-1,0,1),[0]*6)
my_tool = abb.tooldata(True,abb.pose([0,0,0.1],[1,0,0,0]),abb.loaddata(0.001,[0,0,0.001],[1,0,0,0],0,0,0))
mp = abb.MotionProgram(tool=my_tool)
mp.SyncMoveOn()
mp.MoveAbsJ(abb.jointtarget([5,-20,30,27,-11,-27],[0]*6),abb.v1000,abb.fine)
mp.MoveL(t1,abb.v1000,abb.fine)
mp.MoveJ(t2,abb.v5000,abb.fine)
mp.MoveL(t3,abb.v500,abb.fine)
mp.WaitTime(1)
mp.MoveL(t1,abb.v5000,abb.z50)
mp.MoveJ(t2,abb.v500,abb.z200)
mp.MoveL(t3,abb.v5000,abb.fine)
# Fill motion program for T_ROB2. Both programs must have
# same number of commands
t1_2 = abb.robtarget([250,-200,1280],[.707,0,.707,0],abb.confdata(-1,-1,0,1),[0]*6)
t2_2 = abb.robtarget([250,200,1480],[.707,0,.707,0],abb.confdata(0,0,-1,1),[0]*6)
t3_2 = abb.robtarget([250,0,1280],[.707,0,.707,0],abb.confdata(0,0,0,1),[0]*6)
my_tool2 = abb.tooldata(True,abb.pose([0,0,0.5],[1,0,0,0]),abb.loaddata(0.1,[0,0,0.1],[1,0,0,0],0,0,0))
mp2 = abb.MotionProgram(tool=my_tool2)
mp2.SyncMoveOn()
mp2.MoveAbsJ(abb.jointtarget([1,1,40,2,-40,-2],[0]*6),abb.v1000,abb.fine)
mp2.MoveJ(t1_2,abb.v1000,abb.fine)
mp2.MoveL(t2_2,abb.v5000,abb.fine)
mp2.MoveL(t3_2,abb.v500,abb.fine)
mp2.WaitTime(1)
mp2.MoveL(t1_2,abb.v5000,abb.z50)
mp2.MoveL(t2_2,abb.v500,abb.z200)
mp2.MoveL(t3_2,abb.v5000,abb.fine)
# Execute the motion program on the robot
# Change base_url to the robot IP address
client = abb.MotionProgramExecClient(base_url="http://127.0.0.1:80")
# Execute both motion programs simultaneously
log_results = client.execute_multimove_motion_program([mp,mp2])
# log_results.data is a numpy array
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots()
lns1 = ax1.plot(log_results.data[:,0], log_results.data[:,2:8])
ax1.set_xlabel("Time (s)")
ax1.set_ylabel("Joint angle (deg)")
ax2 = ax1.twinx()
lns2 = ax2.plot(log_results.data[:,0], log_results.data[:,1], '-k')
ax2.set_ylabel("Command number")
ax2.set_yticks(range(-1,int(max(log_results.data[:,1]))+1))
ax1.legend(lns1 + lns2, log_results.column_headers[2:8] + ["cmdnum"])
ax1.set_title("Robot 1 joint motion")
fig, ax1 = plt.subplots()
lns1 = ax1.plot(log_results.data[:,0], log_results.data[:,8:])
ax1.set_xlabel("Time (s)")
ax1.set_ylabel("Joint angle (deg)")
ax2 = ax1.twinx()
lns2 = ax2.plot(log_results.data[:,0], log_results.data[:,1], '-k')
ax2.set_ylabel("Command number")
ax2.set_yticks(range(-1,int(max(log_results.data[:,1]))+1))
ax1.legend(lns1 + lns2, log_results.column_headers[8:] + ["cmdnum"])
ax1.set_title("Robot 2 joint motion")
plt.show()
Multi-Move example using relative work object:
# Multi-Move example using relative robot end effector poses
import abb_motion_program_exec as abb
# Fill motion program for T_ROB1
# Hold constant relative position for this example
t1 = abb.robtarget([0,0,-200],[1,0,0,0],abb.confdata(0,0,1,1),[0]*6)
t2 = t1
t3 = t1
my_tool = abb.tooldata(True,abb.pose([0,0,0],[1,0,0,0]),abb.loaddata(0.001,[0,0,0.001],[1,0,0,0],0,0,0))
my_wobj = abb.wobjdata(False,False,"ROB_2",abb.pose([0,0,0],[1,0,0,0]),abb.pose([0,0,0],[0,0,1,0]))
mp = abb.MotionProgram(tool=my_tool,wobj=my_wobj)
mp.SyncMoveOn()
mp.MoveAbsJ(abb.jointtarget([5,-20,30,27,-11,172],[0]*6),abb.v1000,abb.fine)
mp.WaitTime(0.1)
mp.MoveJ(t1,abb.v1000,abb.fine)
mp.MoveJ(t1,abb.v1000,abb.fine)
mp.MoveL(t1,abb.v1000,abb.fine)
# Fill motion program for T_ROB2. Both programs must have
# same number of commands
t1_2 = abb.robtarget([250,-200,1280],[.707,0,.707,0],abb.confdata(-1,-1,0,1),[0]*6)
t2_2 = abb.robtarget([250,200,1480],[.707,0,.707,0],abb.confdata(0,0,-1,1),[0]*6)
t3_2 = abb.robtarget([250,0,1280],[.707,0,.707,0],abb.confdata(0,0,0,1),[0]*6)
my_tool2 = abb.tooldata(True,abb.pose([0,0,0.5],[1,0,0,0]),abb.loaddata(0.1,[0,0,0.1],[1,0,0,0],0,0,0))
mp2 = abb.MotionProgram(tool=my_tool2)
mp2.SyncMoveOn()
mp2.MoveAbsJ(abb.jointtarget([1,1,40,2,-40,-2],[0]*6),abb.v1000,abb.fine)
mp2.WaitTime(0.1)
mp2.MoveL(t1_2,abb.v1000,abb.fine)
mp2.MoveL(t2_2,abb.v5000,abb.fine)
mp2.MoveL(t3_2,abb.v500,abb.fine)
# Execute the motion program on the robot
# Change base_url to the robot IP address
client = abb.MotionProgramExecClient(base_url="http://127.0.0.1:80")
# Execute both motion programs simultaneously
log_results = client.execute_multimove_motion_program([mp,mp2])
# log_results.data is a numpy array
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots()
lns1 = ax1.plot(log_results.data[:,0], log_results.data[:,2:8])
ax1.set_xlabel("Time (s)")
ax1.set_ylabel("Joint angle (deg)")
ax2 = ax1.twinx()
lns2 = ax2.plot(log_results.data[:,0], log_results.data[:,1], '-k')
ax2.set_ylabel("Command number")
ax2.set_yticks(range(-1,int(max(log_results.data[:,1]))+1))
ax1.legend(lns1 + lns2, log_results.column_headers[2:8] + ["cmdnum"])
ax1.set_title("Robot 1 joint motion")
fig, ax1 = plt.subplots()
lns1 = ax1.plot(log_results.data[:,0], log_results.data[:,8:])
ax1.set_xlabel("Time (s)")
ax1.set_ylabel("Joint angle (deg)")
ax2 = ax1.twinx()
lns2 = ax2.plot(log_results.data[:,0], log_results.data[:,1], '-k')
ax2.set_ylabel("Command number")
ax2.set_yticks(range(-1,int(max(log_results.data[:,1]))+1))
ax1.legend(lns1 + lns2, log_results.column_headers[8:] + ["cmdnum"])
ax1.set_title("Robot 2 joint motion")
plt.show()
A Robot Raconteur service is available to allow a client to execute multi-move programs. The service
uses a standards track service definition experimental.robotics.motion_program
that will provide interoperability
between multiple robot types. Due to the differences in the robot commands between controller implementations there
may be slight differences in the commands between robots, but in general the commands are very similar.
When installing the module, include the robotraconteur
option to get the required dependencies:
python -m pip install abb-motion-program-exec[robotraconteur]
Start the service, specifying a robot info file:
abb-motion-program-exec-robotraconteur --mp-robot-info-file=config/abb_multimove_motion_program_robot_default_config.yml
Optionally start using a module if the entrypoint does not work:
python -m abb_motion_program_exec.robotraconteur --mp-robot-info-file=config/abb_multimove_motion_program_robot_default_config.yml
The following options are supported:
--mp-robot-info-file=
- The info file that specifies information about the robot--mp-robot-base-url=
- The connection URL for Robot Web Services on the robot. Defaults to http://127.0.0.1:80
for use with Robot Studio virtual controllers. Set 127.0.0.1
to the WAN IP address of the robot.--mp-robot-username=
- The robot controller username. Defaults to "Default User"--mp-robot-password=
- The robot controller password. Defaults to "robotics"Examples for a single robot and multi-move robots are in the examples/robotraconteur
directory. The motion
programs make heavy use of varvalue
types to allow for flexibility in the motion program contents.
The Python type RR.VarValue
is used to represent the varvalue
type. See the Robot Raconteur Python documentation
for more inforamtion on how RR.VarValue
works and why it is necessary.
rr+tcp://localhost:59843?service=mp_robot
experimental.robotics.motion_program
abb_robot
mp_robot
experimental.robotics.motion_program.MotionProgramRobot
Apache 2.0 License, Copyright 2022 Wason Technology, LLC, Rensselaer Polytechnic Institute
This work was supported in part by Subaward No. ARM-TEC-21-02-F19 from the Advanced Robotics for Manufacturing ("ARM") Institute under Agreement Number W911NF-17-3-0004 sponsored by the Office of the Secretary of Defense. ARM Project Management was provided by Christopher Adams. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of either ARM or the Office of the Secretary of Defense of the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes, notwithstanding any copyright notation herein.
This work was supported in part by the New York State Empire State Development Division of Science, Technology and Innovation (NYSTAR) under contract C160142.