saleyn / eixx

Erlang C++ Interface
Apache License 2.0
137 stars 26 forks source link

eixx - Erlang C++ Interface Library

This library provides a set of classes for convenient marshaling of Erlang terms between processes as well as connecting to other distributed Erlang nodes from a C++ application.

The marshaling classes are built on top of ei library included in http://www.erlang.org/doc/apps/erl_interface.

The library consists of two separate parts:

The term marshaling part of the library has following features:

If you are simply doing term marshalling only the eterm.hpp header along with one of the alloc headers is needed. This allows for header-only usage of the marshalling capabilities.

The connectivity library implements a richer set of features than what's available in erl_interface - it fully supports process linking and monitoring. The library is fully asynchronous and allows handling many connections and mailboxes in one OS thread.

Ths library is dependend on http://www.boost.org project and erl_interface, which is a part of the www.erlang.org distribution.

Downloading

Repository location: http://github.com/saleyn/eixx

$ git clone git@github.com:saleyn/eixx.git

Building

This library is dependent on BOOST.

If you need to customize location of BOOST or installation prefix, create a file called .cmake-args.${HOSTNAME}. Alternatively if you are doing multi-host build with identical configuration, create a file call .cmake-args. E.g.:

There are three sets of variables present in this file:

  1. Build and install locations.

    • DIR:BUILD=... - Build directory
    • DIR:INSTALL=... - Install directory

    They may contain macros:

    • @PROJECT@ - name of current project (from CMakeList.txt)
    • @VERSION@ - project version number (from CMakeList.txt)
    • @BUILD@ - build type (from command line)
    • ${...} - environment variable
  2. ENV:VAR=... - Environment var set before running cmake

  3. VAR=... - Variable passed to cmake with -D prefix

Example:

$ cat > .cmake-args.${HOSTNAME}
DIR:BUILD=/tmp/@PROJECT@/build
DIR:INSTALL=/opt/pkt/@PROJECT@/@VERSION@
ENV:BOOST_ROOT=/opt/pkg/boost/current
ENV:BOOST_LIBRARYDIR=/opt/pkg/boost/current/gcc/lib
PKG_ROOT_DIR=/opt/pkg

Author

Serge Aleynikov

LICENSE

Apache Public License v2.0

Example

Manipulating Erlang terms is quite simple:

eterm i = 10;
eterm s = "abc";
eterm a = atom("ok");
eterm t = {20.0, i, s, a};  // Constructs a tuple
eterm e = list{};           // Constructs an empty list
eterm l = list{i, 100.0, s, {a, 30}, list{}};   // Constructs a list

A convenient eterm::format() function implements an expression parser:

eterm t1 = eterm::format("{ok, 10}");
eterm t2 = eterm::format("[1, 2, ok, [{one, 10}, {two, 20}]]");
eterm t3 = eterm::format("A::int()");            // t3 is a variable that can be matched

Pattern matching is done by constructing a pattern, and matching a term against it. If varbind is provided, it'll store the values of all matched variables:

static const eterm s_pattern = eterm::format("{ok, A::string()}");

eterm value = {atom("ok"), "abc"};

varbind binding;

if (value.match(s_pattern, &binding))
    std::cout << "Value of variable A: " << binding["A"].to_string() << std::endl;

Erlang terms manipulation is pretty efficient. Creation/copying times of polymorphic eterm's are shown below (project compiled in the release mode):

$ build/test/test-perf
                       1000000 iterations
                       Integer | latency:     6ns, speed: 150015001/s
                        Double | latency:     3ns, speed: 300030003/s
                          Bool | latency:     3ns, speed: 300030003/s
                        String | latency:    56ns, speed:  17646955/s
                         Atom1 | latency:    33ns, speed:  30000300/s
                         Atom2 | latency:    36ns, speed:  27272479/s
                       Binary1 | latency:    46ns, speed:  21428877/s
                       Binary2 | latency:     6ns, speed: 150015001/s
                        Tuple1 | latency:    73ns, speed:  13636239/s
                        Tuple2 | latency:    20ns, speed:  50000000/s
                         List1 | latency:    73ns, speed:  13636239/s
                         List2 | latency:    23ns, speed:  42857755/s
                   Apply speed | latency:  1190ns, speed:    840336/s
            Apply/Create speed | latency:   966ns, speed:   1034482/s
 Nested lists/tuples (1) speed | latency:   566ns, speed:   1764695/s
 Nested lists/tuples (2) speed | latency:   466ns, speed:   2142887/s
      Simple pattern match (1) | latency:    33ns, speed:  30003000/s
      Nested pattern match (2) | latency:   333ns, speed:   2999940/s

The last four tests illustrate various ways of creating nested terms with tuples, lists and other types. The other tests illustrate creation times of primitive eterm types.

Aside from providing functionality that allows to manipulate Erlang terms, this library implements Erlang distributed transport that allows a C++ program to connect to an Erlang node, exchange messages, make RPC calls, and receive I/O requests. Here's an example use of the eixx library:

void on_message(otp_mailbox& a_mbox, boost::system::error_code& ec) {
    // On timeout ec == boost::asio::error::timeout
    if (ec == boost::asio::error::timeout) {
        std::cout << "Mailbox " << a_mbox.self() << " timeout: "
                  << ec.message() << std::endl;
    } else {
        // The mailbox has a queue of transport messages.
        // Dequeue next message from the mailbox.
        std::unique_ptr<transport_msg> dist_msg;

        while (dist_msg.reset(a_mbox.receive())) {
            std::cout << "Main mailbox got a distributed transport message:\n  "
                      << *dist_msg << std::endl;

            // Compile the following pattern into the corresponding abstract tree.
            // The expression must be a valid Erlang term
            static const eterm s_pattern = eterm::format("{From, {command, Cmd}}");

            varbind binding;

            // Pattern match the message and bind From and Cmd variables
            if (dist_msg->msg().match(s_pattern, &binding)) {
                const eterm* cmd = binding->find("Cmd");
                std::cout << "Got a command " << *cmd << std::endl;
                // Process command, e.g.:
                // process_command(binding["From"]->to_pid(), *cmd);
            }
        }
    }

    // Schedule next async receive of a message (can also provide a timeout).
    a_mbox.async_receive(&on_message);
}

void on_connect(otp_connection* a_con, const std::string& a_error) {
    if (!a_error.empty()) {
        std::cout << a_error << std::endl;
        return;
    }

    // Illustrate creation of Erlang terms.
    eterm t1 = eterm::format("{ok, ~i}", 10);
    eterm t2 = tuple::make(10, 1.0, atom("test"), "abc");
    eterm t3("This is a string");
    eterm t4(tuple::make(t1, t2, t3));

    otp_node*    node = a_con->node();
    otp_mailbox* mbox = node->get_mailbox("main");

    // Send a message: {{ok, 10}, {10, 1.0, 'test', "abc"}, "This is a string"}
    // to an Erlang process named 'test' running
    // on node "abc@myhost"

    node->send(mbox.self(), a_con->remote_node(), atom("test"), t4);
}

int main() {
    use namespace eixx;

    otp_node node("abc");

    otp_mailbox* mbox = node.create_mailbox("main");

    node.connect(&on_connect, "abc@myhost");

    // Asynchronously receive a message with a deadline of 10s:
    mbox->async_receive(&on_message, 10000);

    node.run();
}

Testing distributed transport

$ make

Run tests:

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:. ./test_eterm

Test distributed transport:

$ cd src

# In this example we assume the host name of "fc12".

[Shell A]$ erl -sname abc
(abc@fc12)1> register(test, self()).

[Shell B]$ ./test_node -n a@fc12 -r abc@fc12
Connected to node: abc@fc12
I/O server got a message:
    #DistMsg{
        type=SEND,
        cntrl={2,'',#Pid<a@fc12.1.0>},
        msg={io_request,#Pid<abc@fc12.273.0>,#Pid<a@fc12.1.0>,
                {put_chars,<<"This is a test string">>}}}

The message above is a result of the on_connect() handler in test_node.cpp issuing an rpc call to the abc@fc12 node of `io:put_chars("This is a test string")'. This the call selects a locally registered process called 'io_server' as the group leader for this rpc call, the I/O output is sent to that mailbox.

Now you can try to send a message from Erlang to the 'main' mailbox registered on the C++ node:

[Shell A]
(abc@fc12)2> {main, a@fc12} ! "This is a test!".

[Shell B]
Main mailbox got a message:
    #DistMsg{
        type=REG_SEND,
        cntrl={6,#Pid<abc@fc12.46.0>,'',main},
        msg="This is a test!"}