.. |resample| image:: doc/_static/logo.svg :alt: resample :target: http://resample.readthedocs.io
.. image:: https://img.shields.io/pypi/v/resample.svg :target: https://pypi.org/project/resample .. image:: https://img.shields.io/conda/vn/conda-forge/resample.svg :target: https://github.com/conda-forge/resample-feedstock .. image:: https://github.com/resample-project/resample/actions/workflows/test.yml/badge.svg :target: https://github.com/resample-project/resample/actions/workflows/tests.yml .. image:: https://coveralls.io/repos/github/resample-project/resample/badge.svg :target: https://coveralls.io/github/resample-project/resample .. image:: https://readthedocs.org/projects/resample/badge/?version=stable :target: https://resample.readthedocs.io/en/stable .. image:: https://img.shields.io/pypi/l/resample :target: https://pypi.org/project/resample .. image:: https://zenodo.org/badge/145776396.svg :target: https://zenodo.org/badge/latestdoi/145776396
Link to full documentation
_
.. _Link to full documentation: http://resample.readthedocs.io
.. skip-marker-do-not-remove
Resampling-based inference in Python based on data resampling and permutation.
This package was created by Daniel Saxton and is now maintained by Hans Dembinski.
numpy
and scipy
We bootstrap the uncertainty of the arithmetic mean, an estimator for the expectation. In this case, we know the formula to compute this uncertainty and can compare it to the bootstrap result. More complex examples can be found in the documentation <https://resample.readthedocs.io/en/stable/tutorials.html>
_.
.. code-block:: python
from resample.bootstrap import variance
import numpy as np
# data
d = [1, 2, 6, 3, 5]
# this call is all you need
stdev_of_mean = variance(np.mean, d) ** 0.5
print(f"bootstrap {stdev_of_mean:.2f}")
print(f"exact {np.std(d) / len(d) ** 0.5:.2f}")
# bootstrap 0.82
# exact 0.83
The amazing thing is that the bootstrap works as well for arbitrarily complex estimators. The bootstrap often provides good results even when the sample size is small.
.. _numpy: http://www.numpy.org .. _scipy: https://www.scipy.org
You can install with pip.
.. code-block:: shell
pip install resample