.. -- mode: rst --
|GitHubActions| |ReadTheDocs| |License| |PythonVersion| |PyPi| |Release| |Commits| |Codecov|
.. |GitHubActions| image:: https://github.com/Quantmetry/qolmat/actions/workflows/test.yml/badge.svg .. _GitHubActions: https://github.com/Quantmetry/qolmat/actions
.. |ReadTheDocs| image:: https://readthedocs.org/projects/qolmat/badge .. _ReadTheDocs: https://qolmat.readthedocs.io/en/latest
.. |License| image:: https://img.shields.io/github/license/Quantmetry/qolmat .. _License: https://github.com/Quantmetry/qolmat/blob/main/LICENSE
.. |PythonVersion| image:: https://img.shields.io/pypi/pyversions/qolmat .. _PythonVersion: https://pypi.org/project/qolmat/
.. |PyPi| image:: https://img.shields.io/pypi/v/qolmat .. _PyPi: https://pypi.org/project/qolmat/
.. |Release| image:: https://img.shields.io/github/v/release/Quantmetry/qolmat .. _Release: https://github.com/Quantmetry/qolmat
.. |Commits| image:: https://img.shields.io/github/commits-since/Quantmetry/qolmat/latest/main .. _Commits: https://github.com/Quantmetry/qolmat/commits/main
.. |Codecov| image:: https://codecov.io/gh/quantmetry/qolmat/branch/main/graph/badge.svg .. _Codecov: https://codecov.io/gh/quantmetry/qolmat
.. image:: https://raw.githubusercontent.com/Quantmetry/qolmat/main/docs/images/logo.png :align: center
Qolmat provides a convenient way to estimate optimal data imputation techniques by leveraging scikit-learn-compatible algorithms. Users can compare various methods based on different evaluation metrics.
Python 3.8+
Qolmat can be installed in different ways:
.. code:: sh
$ pip install qolmat # installation via `pip`
$ pip install qolmat[pytorch] # if you need ImputerDiffusion relying on pytorch
$ pip install git+https://github.com/Quantmetry/qolmat # or directly from the github repository
Let us start with a basic imputation problem. We generate one-dimensional noisy time series with missing values. With just these few lines of code, you can see how easy it is to
.. code-block:: python
import numpy as np import pandas as pd
from qolmat.benchmark import comparator, missing_patterns from qolmat.imputations import imputers from qolmat.utils import data
df_data = data.get_data("Beijing") columns = ["TEMP", "PRES", "WSPM"] df_data = df_data[columns] df_with_nan = data.add_holes(df_data, ratio_masked=0.2, mean_size=120)
imputer_mean = imputers.ImputerMean(groups=("station",)) imputer_interpol = imputers.ImputerInterpolation(method="linear", groups=("station",)) imputer_var1 = imputers.ImputerEM(model="VAR", groups=("station",), method="mle", max_iter_em=50, n_iter_ou=15, dt=1e-3, p=1) dict_imputers = { "mean": imputer_mean, "interpolation": imputer_interpol, "VAR(1) process": imputer_var1 } generator_holes = missing_patterns.EmpiricalHoleGenerator(n_splits=4, ratio_masked=0.1) comparison = comparator.Comparator( dict_imputers, columns, generator_holes = generator_holes, metrics = ["mae", "wmape", "KL_columnwise", "ks_test", "energy"], ) results = comparison.compare(df_with_nan) results.style.highlight_min(color="lightsteelblue", axis=1)
.. image:: https://raw.githubusercontent.com/Quantmetry/qolmat/main/docs/images/readme_tabular_comparison.png :align: center
The full documentation can be found on this link <https://qolmat.readthedocs.io/en/latest/>
_.
How does Qolmat work ?
Qolmat allows model selection for scikit-learn compatible imputation algorithms, by performing three steps pictured below:
1) For each of the K folds, Qolmat artificially masks a set of observed values using a default or user specified hole generator <explanation.html#hole-generator>
.
2) For each fold and each compared imputation method <imputers.html>
, Qolmat fills both the missing and the masked values, then computes each of the default or user specified performance metrics <explanation.html#metrics>
_.
3) For each compared imputer, Qolmat pools the computed metrics from the K folds into a single value.
This is very similar in spirit to the cross_val_score <https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html>
_ function for scikit-learn.
.. image:: https://raw.githubusercontent.com/Quantmetry/qolmat/main/docs/images/schema_qolmat.png :align: center
Imputation methods
The following table contains the available imputation methods. We distinguish single imputation methods (aiming for pointwise accuracy, mostly deterministic) from multiple imputation methods (aiming for distribution similarity, mostly stochastic). For further details regarding the distinction between single and multiple imputation, you can refer to the Imputation article <https://en.wikipedia.org/wiki/Imputation_(statistics)>
_ on Wikipedia.
.. list-table:: :widths: 25 70 15 15 :header-rows: 1
You are welcome to propose and contribute new ideas.
We encourage you to open an issue <https://github.com/quantmetry/qolmat/issues>
so that we can align on the work to be done.
It is generally a good idea to have a quick discussion before opening a pull request that is potentially out-of-scope.
For more information on the contribution process, please go here <https://github.com/Quantmetry/qolmat/blob/main/CONTRIBUTING.rst>
.
Qolmat has been developed by Quantmetry.
|Quantmetry|_
.. |Quantmetry| image:: https://raw.githubusercontent.com/Quantmetry/qolmat/main/docs/images/quantmetry.png :width: 150 .. _Quantmetry: https://www.quantmetry.com/
[1] Candès, Emmanuel J., et al. “Robust principal component analysis?.”
Journal of the ACM (JACM) 58.3 (2011): 1-37,
(pdf <https://arxiv.org/abs/0912.3599>
__)
[2] Wang, Xuehui, et al. “An improved robust principal component
analysis model for anomalies detection of subway passenger flow.”
Journal of advanced transportation 2018 (2018).
(pdf <https://www.hindawi.com/journals/jat/2018/7191549/>
__)
[3] Chen, Yuxin, et al. “Bridging convex and nonconvex optimization in
robust PCA: Noise, outliers, and missing data.” Annals of statistics, 49(5), 2948 (2021), (pdf <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491514/pdf/nihms-1782570.pdf>
__)
[4] Shahid, Nauman, et al. “Fast robust PCA on graphs.” IEEE Journal of
Selected Topics in Signal Processing 10.4 (2016): 740-756.
(pdf <https://arxiv.org/abs/1507.08173>
__)
[5] Jiashi Feng, et al. “Online robust pca via stochastic optimization.“ Advances in neural information processing systems, 26, 2013.
(pdf <https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.721.7506&rep=rep1&type=pdf>
__)
[6] García, S., Luengo, J., & Herrera, F. "Data preprocessing in data mining". 2015.
(pdf <https://www.academia.edu/download/60477900/Garcia__Luengo__Herrera-Data_Preprocessing_in_Data_Mining_-_Springer_International_Publishing_201520190903-77973-th1o73.pdf>
__)
[7] Botterman, HL., Roussel, J., Morzadec, T., Jabbari, A., Brunel, N. "Robust PCA for Anomaly Detection and Data Imputation in Seasonal Time Series" (2022) in International Conference on Machine Learning, Optimization, and Data Science. Cham: Springer Nature Switzerland, (pdf <https://link.springer.com/chapter/10.1007/978-3-031-25891-6_21>
__)
Qolmat is free and open-source software licensed under the BSD 3-Clause license <https://github.com/quantmetry/qolmat/blob/main/LICENSE>
_.