scikit-learn-contrib / sklearn-pandas

Pandas integration with sklearn
Other
2.79k stars 413 forks source link

Sklearn-pandas

.. image:: https://circleci.com/gh/scikit-learn-contrib/sklearn-pandas.svg?style=svg :target: https://circleci.com/gh/scikit-learn-contrib/sklearn-pandas .. image:: https://img.shields.io/pypi/v/sklearn-pandas.svg :target: https://pypi.python.org/pypi/sklearn-pandas/ .. image:: https://anaconda.org/conda-forge/sklearn-pandas/badges/version.svg :target: https://anaconda.org/conda-forge/sklearn-pandas/

.. highlight:: python

This module provides a bridge between Scikit-Learn <http://scikit-learn.org/stable>'s machine learning methods and pandas <https://pandas.pydata.org>-style Data Frames. In particular, it provides a way to map DataFrame columns to transformations, which are later recombined into features.

Installation

You can install sklearn-pandas with pip::

# pip install sklearn-pandas

or conda-forge::

# conda install -c conda-forge sklearn-pandas

Tests

The examples in this file double as basic sanity tests. To run them, use doctest, which is included with python::

# python -m doctest README.rst

Usage

Import


Import what you need from the sklearn_pandas package. The choices are:

For this demonstration, we will import both::

>>> from sklearn_pandas import DataFrameMapper

For these examples, we'll also use pandas, numpy, and sklearn::

>>> import pandas as pd
>>> import numpy as np
>>> import sklearn.preprocessing, sklearn.decomposition, \
...     sklearn.linear_model, sklearn.pipeline, sklearn.metrics, \
...     sklearn.compose
>>> from sklearn.feature_extraction.text import CountVectorizer

Load some Data


Normally you'll read the data from a file, but for demonstration purposes we'll create a data frame from a Python dict::

>>> data = pd.DataFrame({'pet':      ['cat', 'dog', 'dog', 'fish', 'cat', 'dog', 'cat', 'fish'],
...                      'children': [4., 6, 3, 3, 2, 3, 5, 4],
...                      'salary':   [90., 24, 44, 27, 32, 59, 36, 27]})

Transformation Mapping

Map the Columns to Transformations


The mapper takes a list of tuples. Each tuple has three elements:

  1. column name(s): The first element is a column name from the pandas DataFrame, or a list containing one or multiple columns (we will see an example with multiple columns later) or an instance of a callable function such as make_column_selector <https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_selector.html>__.
  2. transformer(s): The second element is an object which will perform the transformation which will be applied to that column.
  3. attributes: The third one is optional and is a dictionary containing the transformation options, if applicable (see "custom column names for transformed features" below).

Let's see an example::

>>> mapper = DataFrameMapper([
...     ('pet', sklearn.preprocessing.LabelBinarizer()),
...     (['children'], sklearn.preprocessing.StandardScaler())
... ])

The difference between specifying the column selector as 'column' (as a simple string) and ['column'] (as a list with one element) is the shape of the array that is passed to the transformer. In the first case, a one dimensional array will be passed, while in the second case it will be a 2-dimensional array with one column, i.e. a column vector.

This behaviour mimics the same pattern as pandas' dataframes __getitem__ indexing::

>>> data['children'].shape
(8,)
>>> data[['children']].shape
(8, 1)

Be aware that some transformers expect a 1-dimensional input (the label-oriented ones) while some others, like OneHotEncoder or Imputer, expect 2-dimensional input, with the shape [n_samples, n_features].

Test the Transformation


We can use the fit_transform shortcut to both fit the model and see what transformed data looks like. In this and the other examples, output is rounded to two digits with np.round to account for rounding errors on different hardware::

>>> np.round(mapper.fit_transform(data.copy()), 2)
array([[ 1.  ,  0.  ,  0.  ,  0.21],
       [ 0.  ,  1.  ,  0.  ,  1.88],
       [ 0.  ,  1.  ,  0.  , -0.63],
       [ 0.  ,  0.  ,  1.  , -0.63],
       [ 1.  ,  0.  ,  0.  , -1.46],
       [ 0.  ,  1.  ,  0.  , -0.63],
       [ 1.  ,  0.  ,  0.  ,  1.04],
       [ 0.  ,  0.  ,  1.  ,  0.21]])

Note that the first three columns are the output of the LabelBinarizer (corresponding to cat, dog, and fish respectively) and the fourth column is the standardized value for the number of children. In general, the columns are ordered according to the order given when the DataFrameMapper is constructed.

Now that the transformation is trained, we confirm that it works on new data::

>>> sample = pd.DataFrame({'pet': ['cat'], 'children': [5.]})
>>> np.round(mapper.transform(sample), 2)
array([[1.  , 0.  , 0.  , 1.04]])

Output features names


In certain cases, like when studying the feature importances for some model, we want to be able to associate the original features to the ones generated by the dataframe mapper. We can do so by inspecting the automatically generated transformed_names_ attribute of the mapper after transformation::

>>> mapper.transformed_names_
['pet_cat', 'pet_dog', 'pet_fish', 'children']

Custom column names for transformed features


We can provide a custom name for the transformed features, to be used instead of the automatically generated one, by specifying it as the third argument of the feature definition::

mapper_alias = DataFrameMapper([ ... (['children'], sklearn.preprocessing.StandardScaler(), ... {'alias': 'childrenscaled'}) ... ]) = mapper_alias.fit_transform(data.copy()) mapper_alias.transformednames ['children_scaled']

Alternatively, you can also specify prefix and/or suffix to add to the column name. For example::

mapper_alias = DataFrameMapper([ ... (['children'], sklearn.preprocessing.StandardScaler(), {'prefix': 'standardscaled'}), ... (['children'], sklearn.preprocessing.StandardScaler(), {'suffix': 'raw'}) ... ]) = mapper_alias.fit_transform(data.copy()) mapper_alias.transformednames ['standard_scaled_children', 'children_raw']

Dynamic Columns


In some situations the columns are not known before hand and we would like to dynamically select them during the fit operation. As shown below, in such situations you can provide either a custom callable or use make_column_selector <https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_selector.html>__.

::

>>> class GetColumnsStartingWith:
...   def __init__(self, start_str):
...     self.pattern = start_str
...
...   def __call__(self, X:pd.DataFrame=None):
...     return [c for c in X.columns if c.startswith(self.pattern)]
...
>>> df = pd.DataFrame({
...    'sepal length (cm)': [1.0, 2.0, 3.0],
...    'sepal width (cm)': [1.0, 2.0, 3.0],
...    'petal length (cm)': [1.0, 2.0, 3.0],
...    'petal width (cm)': [1.0, 2.0, 3.0]
... })
>>> t = DataFrameMapper([
...     (
...       sklearn.compose.make_column_selector(dtype_include=float),
...       sklearn.preprocessing.StandardScaler(),
...       {'alias': 'x'}
...     ),
...     (
...       GetColumnsStartingWith('petal'),
...       None,
...       {'alias': 'petal'}
...     )], df_out=True, default=False)
>>> t.fit(df).transform(df).shape
(3, 6)
>>> t.transformed_names_
['x_0', 'x_1', 'x_2', 'x_3', 'petal_0', 'petal_1']

Above we use make_column_selector to select all columns that are of type float and also use a custom callable function to select columns that start with the word 'petal'.

Passing Series/DataFrames to the transformers


By default the transformers are passed a numpy array of the selected columns as input. This is because sklearn transformers are historically designed to work with numpy arrays, not with pandas dataframes, even though their basic indexing interfaces are similar.

However we can pass a dataframe/series to the transformers to handle custom cases initializing the dataframe mapper with input_df=True::

>>> from sklearn.base import TransformerMixin
>>> class DateEncoder(TransformerMixin):
...    def fit(self, X, y=None):
...        return self
...
...    def transform(self, X):
...        dt = X.dt
...        return pd.concat([dt.year, dt.month, dt.day], axis=1)
>>> dates_df = pd.DataFrame(
...     {'dates': pd.date_range('2015-10-30', '2015-11-02')})
>>> mapper_dates = DataFrameMapper([
...     ('dates', DateEncoder())
... ], input_df=True)
>>> mapper_dates.fit_transform(dates_df)
array([[2015,   10,   30],
       [2015,   10,   31],
       [2015,   11,    1],
       [2015,   11,    2]])

We can also specify this option per group of columns instead of for the whole mapper::

mapper_dates = DataFrameMapper([ ... ('dates', DateEncoder(), {'input_df': True}) ... ]) mapper_dates.fit_transform(dates_df) array([[2015, 10, 30], [2015, 10, 31], [2015, 11, 1], [2015, 11, 2]])

Outputting a dataframe


By default the output of the dataframe mapper is a numpy array. This is so because most sklearn estimators expect a numpy array as input. If however we want the output of the mapper to be a dataframe, we can do so using the parameter df_out when creating the mapper::

>>> mapper_df = DataFrameMapper([
...     ('pet', sklearn.preprocessing.LabelBinarizer()),
...     (['children'], sklearn.preprocessing.StandardScaler())
... ], df_out=True)
>>> np.round(mapper_df.fit_transform(data.copy()), 2)
   pet_cat  pet_dog  pet_fish  children
0        1        0         0      0.21
1        0        1         0      1.88
2        0        1         0     -0.63
3        0        0         1     -0.63
4        1        0         0     -1.46
5        0        1         0     -0.63
6        1        0         0      1.04
7        0        0         1      0.21

The names for the columns are the same ones present in the transformed_names_ attribute.

Note this does not work together with the default=True or sparse=True arguments to the mapper.

Dropping columns explictly


Sometimes it is required to drop a specific column/ list of columns. For this purpose, drop_cols argument for DataFrameMapper can be used. Default value is None::

>>> mapper_df = DataFrameMapper([
...     ('pet', sklearn.preprocessing.LabelBinarizer()),
...     (['children'], sklearn.preprocessing.StandardScaler())
... ], drop_cols=['salary'])

Now running fit_transform will run transformations on 'pet' and 'children' and drop 'salary' column::

np.round(mapper_df.fit_transform(data.copy()), 1) array([[ 1. , 0. , 0. , 0.2], [ 0. , 1. , 0. , 1.9], [ 0. , 1. , 0. , -0.6], [ 0. , 0. , 1. , -0.6], [ 1. , 0. , 0. , -1.5], [ 0. , 1. , 0. , -0.6], [ 1. , 0. , 0. , 1. ], [ 0. , 0. , 1. , 0.2]])

Transformations may require multiple input columns. In these

Transform Multiple Columns


Transformations may require multiple input columns. In these cases, the column names can be specified in a list::

>>> mapper2 = DataFrameMapper([
...     (['children', 'salary'], sklearn.decomposition.PCA(1))
... ])

Now running fit_transform will run PCA on the children and salary columns and return the first principal component::

>>> np.round(mapper2.fit_transform(data.copy()), 1)
array([[ 47.6],
       [-18.4],
       [  1.6],
       [-15.4],
       [-10.4],
       [ 16.6],
       [ -6.4],
       [-15.4]])

Multiple transformers for the same column


Multiple transformers can be applied to the same column specifying them in a list::

>>> from sklearn.impute import SimpleImputer
>>> mapper3 = DataFrameMapper([
...     (['age'], [SimpleImputer(),
...                sklearn.preprocessing.StandardScaler()])])
>>> data_3 = pd.DataFrame({'age': [1, np.nan, 3]})
>>> mapper3.fit_transform(data_3)
array([[-1.22474487],
       [ 0.        ],
       [ 1.22474487]])

Columns that don't need any transformation


Only columns that are listed in the DataFrameMapper are kept. To keep a column but don't apply any transformation to it, use None as transformer::

>>> mapper3 = DataFrameMapper([
...     ('pet', sklearn.preprocessing.LabelBinarizer()),
...     ('children', None)
... ])
>>> np.round(mapper3.fit_transform(data.copy()))
array([[1., 0., 0., 4.],
       [0., 1., 0., 6.],
       [0., 1., 0., 3.],
       [0., 0., 1., 3.],
       [1., 0., 0., 2.],
       [0., 1., 0., 3.],
       [1., 0., 0., 5.],
       [0., 0., 1., 4.]])

Applying a default transformer


A default transformer can be applied to columns not explicitly selected passing it as the default argument to the mapper::

>>> mapper4 = DataFrameMapper([
...     ('pet', sklearn.preprocessing.LabelBinarizer()),
...     ('children', None)
... ], default=sklearn.preprocessing.StandardScaler())
>>> np.round(mapper4.fit_transform(data.copy()), 1)
array([[ 1. ,  0. ,  0. ,  4. ,  2.3],
       [ 0. ,  1. ,  0. ,  6. , -0.9],
       [ 0. ,  1. ,  0. ,  3. ,  0.1],
       [ 0. ,  0. ,  1. ,  3. , -0.7],
       [ 1. ,  0. ,  0. ,  2. , -0.5],
       [ 0. ,  1. ,  0. ,  3. ,  0.8],
       [ 1. ,  0. ,  0. ,  5. , -0.3],
       [ 0. ,  0. ,  1. ,  4. , -0.7]])

Using default=False (the default) drops unselected columns. Using default=None pass the unselected columns unchanged.

Same transformer for the multiple columns


Sometimes it is required to apply the same transformation to several dataframe columns. To simplify this process, the package provides gen_features function which accepts a list of columns and feature transformer class (or list of classes), and generates a feature definition, acceptable by DataFrameMapper.

For example, consider a dataset with three categorical columns, 'col1', 'col2', and 'col3', To binarize each of them, one could pass column names and LabelBinarizer transformer class into generator, and then use returned definition as features argument for DataFrameMapper::

>>> from sklearn_pandas import gen_features
>>> feature_def = gen_features(
...     columns=['col1', 'col2', 'col3'],
...     classes=[sklearn.preprocessing.LabelEncoder]
... )
>>> feature_def
[('col1', [LabelEncoder()], {}), ('col2', [LabelEncoder()], {}), ('col3', [LabelEncoder()], {})]
>>> mapper5 = DataFrameMapper(feature_def)
>>> data5 = pd.DataFrame({
...     'col1': ['yes', 'no', 'yes'],
...     'col2': [True, False, False],
...     'col3': ['one', 'two', 'three']
... })
>>> mapper5.fit_transform(data5)
array([[1, 1, 0],
       [0, 0, 2],
       [1, 0, 1]])

If it is required to override some of transformer parameters, then a dict with 'class' key and transformer parameters should be provided. For example, consider a dataset with missing values. Then the following code could be used to override default imputing strategy::

>>> from sklearn.impute import SimpleImputer
>>> import numpy as np
>>> feature_def = gen_features(
...     columns=[['col1'], ['col2'], ['col3']],
...     classes=[{'class': SimpleImputer, 'strategy':'most_frequent'}]
... )
>>> mapper6 = DataFrameMapper(feature_def)
>>> data6 = pd.DataFrame({
...     'col1': [np.nan, 1, 1, 2, 3],
...     'col2': [True, False, np.nan, np.nan, True],
...     'col3': [0, 0, 0, np.nan, np.nan]
... })
>>> mapper6.fit_transform(data6)
array([[1.0, True, 0.0],
       [1.0, False, 0.0],
       [1.0, True, 0.0],
       [2.0, True, 0.0],
       [3.0, True, 0.0]], dtype=object)

You can also specify global prefix or suffix for the generated transformed column names using the prefix and suffix parameters::

>>> feature_def = gen_features(
...     columns=['col1', 'col2', 'col3'],
...     classes=[sklearn.preprocessing.LabelEncoder],
...     prefix="lblencoder_"
... )
>>> mapper5 = DataFrameMapper(feature_def)
>>> data5 = pd.DataFrame({
...     'col1': ['yes', 'no', 'yes'],
...     'col2': [True, False, False],
...     'col3': ['one', 'two', 'three']
... })
>>> _ = mapper5.fit_transform(data5)
>>> mapper5.transformed_names_
['lblencoder_col1', 'lblencoder_col2', 'lblencoder_col3']

Feature selection and other supervised transformations


DataFrameMapper supports transformers that require both X and y arguments. An example of this is feature selection. Treating the 'pet' column as the target, we will select the column that best predicts it.

::

>>> from sklearn.feature_selection import SelectKBest, chi2
>>> mapper_fs = DataFrameMapper([(['children','salary'], SelectKBest(chi2, k=1))])
>>> mapper_fs.fit_transform(data[['children','salary']], data['pet'])
array([[90.],
       [24.],
       [44.],
       [27.],
       [32.],
       [59.],
       [36.],
       [27.]])

Working with sparse features


A DataFrameMapper will return a dense feature array by default. Setting sparse=True in the mapper will return a sparse array whenever any of the extracted features is sparse. Example::

>>> mapper5 = DataFrameMapper([
...     ('pet', CountVectorizer()),
... ], sparse=True)
>>> type(mapper5.fit_transform(data))
<class 'scipy.sparse.csr.csr_matrix'>

The stacking of the sparse features is done without ever densifying them.

Using NumericalTransformer


While you can use FunctionTransformation to generate arbitrary transformers, it can present serialization issues when pickling. Use NumericalTransformer instead, which takes the function name as a string parameter and hence can be easily serialized.

::

>>> from sklearn_pandas import NumericalTransformer
>>> mapper5 = DataFrameMapper([
...     ('children', NumericalTransformer('log')),
... ])
>>> mapper5.fit_transform(data)
array([[1.38629436],
       [1.79175947],
       [1.09861229],
       [1.09861229],
       [0.69314718],
       [1.09861229],
       [1.60943791],
       [1.38629436]])

Changing Logging level


You can change log level to info to print time take to fit/transform features. Setting it to higher level will stop printing elapsed time. Below example shows how to change logging level.

::

>>> import logging
>>> logging.getLogger('sklearn_pandas').setLevel(logging.INFO)

Changelog

2.2.0 (2021-05-07)


2.1.0 (2021-02-26)


2.0.4 (2020-11-06)


2.0.3 (2020-11-06)


2.0.2 (2020-10-01)


2.0.1 (2020-09-07)


2.0.0 (2020-08-01)


1.8.0 (2018-12-01)


1.7.0 (2018-08-15)


1.6.0 (2017-10-28)


1.5.0 (2017-06-24)


1.4.0 (2017-05-13)


1.3.0 (2017-01-21)


1.2.0 (2016-10-02)


1.1.0 (2015-12-06)


1.0.0 (2015-11-28)


0.0.12 (2015-11-07)


Credits

The code for DataFrameMapper is based on code originally written by Ben Hamner <https://github.com/benhamner>__.

Other contributors: