Implementation of the paper
Zhou, Z., Zhang, S., and Huang, Z., "Dynamic Self-training Framework for Graph Convolutional Networks", arXiv e-prints, 2019.(https://arxiv.org/abs/1910.02684?context=stat.ML)
This code is based on the GCN code in kipf's version , implemented mainly on tensorflow.
How to run the experiments?
"cd" where "exps.py" is, and
"python exps.py",
Wait for the results!
Or run it on server and nohup it:
"nohup python3 -u exps.py > log.txt 2>&1 &"
Results can be seen in "results.txt".
How to modify the experiments you want?
See the "exps.py",
"results=main(inputParameters=parameters)" is a standard form to convey parameters into
experiment, "parameters" is a dictionary which restore value of parameters.
Default parameters can be seen in function "constructDefaultParameterDict", if a parameter
is not in the keys of "parameters", we use its default value.
For example:
"for parameters in [{'dataset':'cora','train_size':20},
{'dataset':'pubmed','standard_split':True}]:
for i in range(100):
results=main(inputParameters=parameters)"