scottmudge / Prusa-Firmware-MeatPack

Firmware for Original Prusa i3 3D printer by PrusaResearch - Modified for G-Code Compression
GNU General Public License v3.0
18 stars 3 forks source link

Prusa Firmware MK3 (with MeatPack Support)

NOTE:

Please find the primary MeatPack OctoPrint repository here.

This is a fork of the original Prusa Firmware. I've modified it to add support for "MeatPack", a g-code compression algorithm I have developed to be used with OctoPrint. This firmware is functionally identical, but if the MeatPack OctoPrint plugin is installed and enabled, g-code can be compressed by a ratio of ~0.61 - 0.62 over the serial connection, improving print quality for parts with complex and spatially dense curvature. The compression method is extremely light-weight, and imposes virtually no computational overhead on the microprocessor running the firmware. Please see the plugin repository above for more information.

Please find firmware builds with MeatPack support enabled in the "Releases" section of this repository.

Latest build is here: https://github.com/scottmudge/Prusa-Firmware-MeatPack/releases/tag/v3.12.2-meatpack


This repository contains the source code and the development versions of the firmware running on the Original Prusa i3 MK3S/MK3 line of printers.

The latest official builds can be downloaded from Prusa Drivers. Pre-built development releases are also available here.

The firmware for the Original Prusa i3 printers is proudly based on Marlin 1.0.x by Scott Lahteine (@thinkyhead) et al. and is distributed under the terms of the GNU GPL 3 license.

Table of contents

Build

Linux

  1. Clone this repository and checkout the correct branch for your desired release version.

  2. Set your printer model.

    • For MK3 --> skip to step 3.
    • If you have a different printer model, follow step 2.b from Windows build
  3. Install GNU AWK sudo apt-get install gawk
    If you use mawk instead of gawk you get strange errors when multi language support is generated like:
    awk: line 2: function strtonum never defined sed: couldn't write 4 items to stdout: Broken pipe ./lang-build.sh: 121: ./lang-build.sh: arithmetic expression: expecting EOF: "0x"awk: line 2: function strtonum never defined sed: couldn't write 4 items to stdout: Broken pipe tr: write error: Broken pipe ./lang-build.sh: 121: ./lang-build.sh: arithmetic expression: expecting EOF: "0x"awk: line 2: function strtonum never defined sed: couldn't write 4 items to stdout: Broken pipe tr: write error: Broken pipe tr: write error cut: write error: Broken pipeNG! - some texts not found in lang_en.txt! updating binary: primary language ids...awk: line 2: function strtonum never defined sed: couldn't flush stdout: Broken pipe

  4. Run ./build.sh

    • Output hex file is at "PrusaFirmware/lang/firmware.hex" . In the same folder you can hex files for other languages as well.
  5. Connect your printer and flash with PrusaSlicer ( Configuration --> Flash printer firmware ) or Slic3r PE.

    • If you wish to flash from Arduino, follow step 2.c from Windows build first.

Notes:

The script downloads Arduino with our modifications and Rambo board support installed, unpacks it into folder PF-build-env-\<version\> on the same level, as your Prusa-Firmware folder is located, builds firmware for MK3 using that Arduino in Prusa-Firmware-build folder on the same level as Prusa-Firmware, runs secondary language support scripts. Firmware with secondary language support is generated in lang subfolder. Use firmware.hex for MK3 variant. Use firmware_\<lang\>.hex for other printers. Don't forget to follow step 2.b first for non-MK3 printers.

Windows

Using Arduino

Note: Multi language build is not supported.

1. Development environment preparation

a. Install "Arduino Software IDE" from the official website https://www.arduino.cc -> Software->Downloads

It is recommended to use version "1.8.5", as it is used on our build server to produce official builds.

b. Setup Arduino to use Prusa Rambo board definition

c. Modify compiler flags in platform.txt file

Notes:

In the case of persistent compilation problems, check the version of the currently used C/C++ compiler (GCC) - should be at leas 4.8.1; If you are not sure where the file is placed (depends on how "Arduino Software IDE" was installed), you can use the search feature within the file system

Name collision for "LiquidCrystal" library known from previous versions is now obsolete (so there is no need to delete or rename original file/-s)

2. Source code compilation

a. Clone this repositoryhttps://github.com/prusa3d/Prusa-Firmware/ to your local drive.

b. In the subdirectory "Firmware/variants/" select the configuration file (.h) corresponding to your printer model, make copy named "Configuration_prusa.h" (or make simple renaming) and copy it into "Firmware/" directory.

c. In file "Firmware/config.h" set LANG_MODE to 0.

d. Run "Arduino IDE"; select the file "Firmware.ino" from the subdirectory "Firmware/" at the location, where you placed the source code File->Open Make the desired code customizations; all changes are on your own risk!

e. Select the target board "Tools->Board->PrusaResearch Einsy RAMBo"

f. Run the compilation Sketch->Verify/Compile

g. Upload the result code into the connected printer Sketch->Upload

Using Linux subsystem under Windows 10 64-bit

notes: Script and instructions contributed by 3d-gussner. Use at your own risk. Script downloads Arduino executables outside of Prusa control. Report problems there. Multi language build is supported.

Some Tips for Ubuntu and Debian

Using Git-bash under Windows 10 64-bit

notes: Script and instructions contributed by 3d-gussner. Use at your own risk. Script downloads Arduino executables outside of Prusa control. Report problems there. Multi language build is supported.

3. Automated tests

Prerequisites

Building

Create a folder where you want to build tests.

Example:

cd ..

mkdir Prusa-Firmware-test

Generate build scripts in target folder.

Example:

cd Prusa-Firmware-test

cmake -G "Eclipse CDT4 - Ninja" ../Prusa-Firmware

or for DEBUG build:

cmake -G "Eclipse CDT4 - Ninja" -DCMAKE_BUILD_TYPE=Debug ../Prusa-Firmware

Build it.

Example:

ninja

Running

./tests

4. Documentation

run doxygen in Firmware folder or visit https://prusa3d.github.io/Prusa-Firmware-Doc for doxygen generated output

5. FAQ

Q:I built firmware using Arduino and I see "?" instead of numbers in printer user interface.

A:Step 1.c was omitted or you updated Arduino and now platform.txt located somewhere in your user profile is used.

Q:I built firmware using Arduino and my printer now speaks "Klingon" (nonsense characters and symbols are displayed @^#$&*°;~ÿ)

A:Step 2.c was omitted.

Q:What environment does Prusa use to build its official firmware releases?

A:Our production builds are 99.9% equivalent to https://github.com/prusa3d/Prusa-Firmware#linux this is also easiest way to build as only one step is needed - run a single script, which downloads patched Arduino from GitHub, builds using it, then extracts translated strings and creates language variants (for MK2x) or language hex file for external SPI flash (MK3x). But you need Linux or Linux in a virtual machine. This is also what happens when you open a pull request to our repository - all variants are built by Travis http://travis-ci.org/ (to check for compilation errors). You can see, what is happening in .travis.yml. It would be also possible to get hex built by Travis, only the deploy step is missing in .travis.yml. You can find inspiration on how to deploy hex in Travis and how to setup Travis in https://github.com/prusa3d/MM-control-01/ repository. The final hex is located in ./lang/firmware.hex - community reproduced this for Windows in https://github.com/prusa3d/Prusa-Firmware#using-linux-subsystem-under-windows-10-64-bit or https://github.com/prusa3d/Prusa-Firmware#using-git-bash-under-windows-10-64-bit .

Q:Why are build instructions for Arduino a mess?

Y:We are too lazy to ship a proper board definition for Arduino. We plan to switch to CMake + ninja to be inherently multiplatform, easily integrate build tools, suport more IDEs, get 10 times shorter build times and be able to update compiler whenever we want.