scottykwok / cervix-roi-segmentation-by-unet

35 stars 11 forks source link

Cervix ROI Segmentation Using U-NET

Overview

This code illustrate how to segment the ROI in cervical images using U-NET.

The ROI here meant to include the: Os + transformation zone + nearby tissue.

The localized ROI is supposed to improve the classification of cervical types, which is the challenge in the Kaggle competition:Intel and MobileODT Cervical Cancer Screening

Compare to other UNET examples, in this one we got:

Dependencies:

Other references:


Usage

Data preparation:

Training:

Segmentation:

Configurations:


Results

On a GTX 1070, the training of 400 epochs took ~2 hours to complete. The best DICE coefficient is ~0.78.

Apply this model to the 512 unseen test images, the result looks satisfactory in 96% of images.

Sample outputs: img/preview.jpg

Training loss: img/loss_history.jpg