ksuid is an efficient, comprehensive, battle-tested Go library for generating and parsing a specific kind of globally unique identifier called a KSUID. This library serves as its reference implementation.
go get -u github.com/segmentio/ksuid
KSUID is for K-Sortable Unique IDentifier. It is a kind of globally unique identifier similar to a RFC 4122 UUID, built from the ground-up to be "naturally" sorted by generation timestamp without any special type-aware logic.
In short, running a set of KSUIDs through the UNIX sort
command will result
in a list ordered by generation time.
There are numerous methods for generating unique identifiers, so why KSUID?
Even if only one of these properties are important to you, KSUID is a great choice! :) Many projects chose to use KSUIDs just because the text representation is copy-and-paste friendly.
For a follow up read on the topic: A brief history of UUID
Unlike the more ubiquitous UUIDv4, a KSUID contains a timestamp component that allows them to be loosely sorted by generation time. This is not a strong guarantee (an invariant) as it depends on wall clocks, but is still incredibly useful in practice. Both the binary and text representations will sort by creation time without any special sorting logic.
While RFC 4122 UUIDv1s do include a time component, there aren't enough bytes of randomness to provide strong protection against collisions (duplicates). With such a low amount of entropy, it is feasible for a malicious party to guess generated IDs, creating a problem for systems whose security is, implicitly or explicitly, sensitive to an adversary guessing identifiers.
To fit into a 64-bit number space, Snowflake IDs and its derivatives require coordination to avoid collisions, which significantly increases the deployment complexity and operational burden.
A KSUID includes 128 bits of pseudorandom data ("entropy"). This number space is 64 times larger than the 122 bits used by the well-accepted RFC 4122 UUIDv4 standard. The additional timestamp component can be considered "bonus entropy" which further decreases the probability of collisions, to the point of physical infeasibility in any practical implementation.
The text and binary representations are lexicographically sortable, which allows them to be dropped into systems which do not natively support KSUIDs and retain their time-ordered property.
The text representation is an alphanumeric base62 encoding, so it "fits" anywhere alphanumeric strings are accepted. No delimiters are used, so stringified KSUIDs won't be inadvertently truncated or tokenized when interpreted by software that is designed for human-readable text, a common problem for the text representation of RFC 4122 UUIDs.
Binary KSUIDs are 20-bytes: a 32-bit unsigned integer UTC timestamp and a 128-bit randomly generated payload. The timestamp uses big-endian encoding, to support lexicographic sorting. The timestamp epoch is adjusted to May 13th, 2014, providing over 100 years of life. The payload is generated by a cryptographically-strong pseudorandom number generator.
The text representation is always 27 characters, encoded in alphanumeric base62 that will lexicographically sort by timestamp.
This library is designed to be used in code paths that are performance
critical. Its code has been tuned to eliminate all non-essential
overhead. The KSUID
type is derived from a fixed-size array, which
eliminates the additional reference chasing and allocation involved in
a variable-width type.
The API provides an interface for use in code paths which are sensitive
to allocation. For example, the Append
method can be used to parse the
text representation and replace the contents of a KSUID
value
without additional heap allocation.
All public package level "pure" functions are concurrency-safe, protected
by a global mutex. For hot loops that generate a large amount of KSUIDs
from a single Goroutine, the Sequence
type is provided to elide the
potential contention.
By default, out of an abundance of caution, the cryptographically-secure
PRNG is used to generate the random bits of a KSUID. This can be relaxed
in extremely performance-critical code using the included FastRander
type. FastRander
uses the standard PRNG with a seed generated by the
cryptographically-secure PRNG.
NOTE: While there is no evidence that FastRander
will increase the
probability of a collision, it shouldn't be used in scenarios where
uniqueness is important to security, as there is an increased chance
the generated IDs can be predicted by an adversary.
This code has been used in production at Segment for several years, across a diverse array of projects. Trillions upon trillions of KSUIDs have been generated in some of Segment's most performance-critical, large-scale distributed systems.
Designed to be integrated with other libraries, the KSUID
type
implements many standard library interfaces, including:
Stringer
database/sql.Scanner
and database/sql/driver.Valuer
encoding.BinaryMarshal
and encoding.BinaryUnmarshal
encoding.TextMarshal
and encoding.TextUnmarshal
(encoding/json
friendly!)This package comes with a command-line tool ksuid
, useful for
generating KSUIDs as well as inspecting the internal components of
existing KSUIDs. Machine-friendly output is provided for scripting
use cases.
Given a Go build environment, it can be installed with the command:
$ go install github.com/segmentio/ksuid/cmd/ksuid
$ ksuid
0ujsswThIGTUYm2K8FjOOfXtY1K
$ ksuid -n 4
0ujsszwN8NRY24YaXiTIE2VWDTS
0ujsswThIGTUYm2K8FjOOfXtY1K
0ujssxh0cECutqzMgbtXSGnjorm
0ujsszgFvbiEr7CDgE3z8MAUPFt
$ ksuid -f inspect 0ujtsYcgvSTl8PAuAdqWYSMnLOv
REPRESENTATION:
String: 0ujtsYcgvSTl8PAuAdqWYSMnLOv
Raw: 0669F7EFB5A1CD34B5F99D1154FB6853345C9735
COMPONENTS:
Time: 2017-10-09 21:00:47 -0700 PDT
Timestamp: 107608047
Payload: B5A1CD34B5F99D1154FB6853345C9735
$ ksuid -f inspect
REPRESENTATION:
String: 0ujzPyRiIAffKhBux4PvQdDqMHY
Raw: 066A029C73FC1AA3B2446246D6E89FCD909E8FE8
COMPONENTS:
Time: 2017-10-09 21:46:20 -0700 PDT
Timestamp: 107610780
Payload: 73FC1AA3B2446246D6E89FCD909E8FE8
$ ksuid -f template -t '{{ .Time }}: {{ .Payload }}' 0ujtsYcgvSTl8PAuAdqWYSMnLOv
2017-10-09 21:00:47 -0700 PDT: B5A1CD34B5F99D1154FB6853345C9735
$ ksuid -f template -t '{{ .Time }}: {{ .Payload }}' $(ksuid -n 4)
2017-10-09 21:05:37 -0700 PDT: 304102BC687E087CC3A811F21D113CCF
2017-10-09 21:05:37 -0700 PDT: EAF0B240A9BFA55E079D887120D962F0
2017-10-09 21:05:37 -0700 PDT: DF0761769909ABB0C7BB9D66F79FC041
2017-10-09 21:05:37 -0700 PDT: 1A8F0E3D0BDEB84A5FAD702876F46543
$ ksuid -f template -t '{ "timestamp": "{{ .Timestamp }}", "payload": "{{ .Payload }}", "ksuid": "{{.String}}"}' -n 4
{ "timestamp": "107611700", "payload": "9850EEEC191BF4FF26F99315CE43B0C8", "ksuid": "0uk1Hbc9dQ9pxyTqJ93IUrfhdGq"}
{ "timestamp": "107611700", "payload": "CC55072555316F45B8CA2D2979D3ED0A", "ksuid": "0uk1HdCJ6hUZKDgcxhpJwUl5ZEI"}
{ "timestamp": "107611700", "payload": "BA1C205D6177F0992D15EE606AE32238", "ksuid": "0uk1HcdvF0p8C20KtTfdRSB9XIm"}
{ "timestamp": "107611700", "payload": "67517BA309EA62AE7991B27BB6F2FCAC", "ksuid": "0uk1Ha7hGJ1Q9Xbnkt0yZgNwg3g"}
There are times when you are sure your ksuid is correct. But you need to get it from bytes or string and pass it it's to the structure. For this, there are OrNil functions that return ksuid.Nil on error and can be called directly in the structure.
Functions:
ParseOrNil()
FromPartsOrNil()
FromBytesOrNil()
An example of using the function without OrNil:
func getPosts(before, after []byte) {
b, err := ksuid.FromBytes(before)
if err != nil {
// handle error
}
a, err := ksuid.FromBytes(after)
if err != nil {
// handle error
}
sortOptions := SortOptions{Before: b, After: a}
}
It is much more convenient to do it like this:
func getPosts(before, after []byte) {
sortOptions := SortOptions{
Before: ksuid.FromBytesOrNil(before),
After: ksuid.FromBytesOrNil(after),
}
}
OrNil functions are also used in many other libraries:
ksuid source code is available under an MIT License.